On Minimum Sum of Radii and Diameters Clustering

  • Babak Behsaz
  • Mohammad R. Salavatipour
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

Given a metric (V,d) and an integer k, we consider the problem of covering the points of V with at most k clusters so as to minimize the sum of radii or the sum of diameters of these clusters. The former problem is called the Minimum Sum Radii (MSR) problem and the latter is the Minimum Sum Diameters (MSD) problem. The current best polynomial time algorithms for these problems have approximation ratios 3.504 and 7.008, respectively [2]. For the MSR problem, we give an exact algorithm when the metric is the shortest-path metric of an unweighted graph and there cannot be any singleton clusters. For the MSD problem on the plane with Euclidean distances, we present a polynomial time approximation scheme.

Keywords

clustering minimum sum radii and diameters Euclidean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Capoyleas, V., Rote, G., Woeginger, G.: Geometric clusterings. Journal of Algorithms 12(2), 341–356 (1991)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters. Journal of Computer and System Sciences 68(2), 417–441 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation algorithms for clustering to minimize the sum of diameters. Nordic J. of Computing 7(3), 185–203 (2000)MathSciNetMATHGoogle Scholar
  4. 4.
    Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On metric clustering to minimize the sum of radii. Algorithmica (2010)Google Scholar
  5. 5.
    Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering to minimize the sum of radii. SIAM Journal on Computing 41(1), 47–60 (2012)MATHCrossRefGoogle Scholar
  6. 6.
    Hansen, P., Jaumard, B.: Minimum sum of diameters clustering. Journal of Classification 4(2), 215–226 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem. Mathematics of Operations Research 10(2), 180–184 (1985)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Jung, H.W.: Über die kleinste kugel, die eine räumliche figur einschliesst. J. Reine Angew. Math. 123, 241–257 (1901)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Babak Behsaz
    • 1
  • Mohammad R. Salavatipour
    • 1
  1. 1.Dept. of Computing Sci.Univ. of AlbertaEdmontonCanada

Personalised recommendations