Higher Order City Voronoi Diagrams

  • Andreas Gemsa
  • D. T. Lee
  • Chih-Hung Liu
  • Dorothea Wagner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of kth-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n + kc), where c is the complexity of the transportation network. This is quite different from the bound O(k(n − k)) in the Euclidean metric [12]. For the special case where k = n − 1 the complexity in the Euclidean metric is O(n), while that in the city metric is Θ(nc). Furthermore, we develop an O(k2(n + c)log(n + c))-time iterative algorithm to compute the kth-order city Voronoi diagram and an O(nclog2(n + c)logn)-time divide-and-conquer algorithm to compute the farthest-site city Voronoi diagram.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. Discrete Comput. Geom. 31, 17–35 (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Agarwal, P.K., de Berg, M., Matoušek, J., Schwarzkopf, O.: Constructing levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput. 27(3), 654–667 (1998)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aurenhammer, F., Schwarzkopf, O.: A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams. Internat. J. Comput. Geom. Appl. 2, 363–381 (1992)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bae, S.W., Chwa, K.-Y.: Shortest Paths and Voronoi Diagrams with Transportation Networks Under General Distances. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1007–1018. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Boissonnat, J.D., Devillers, O., Teillaud, M.: A semidynamic construction of higher-order Voronoi diagrams and its randomized analysis. Algorithmica 9, 329–356 (1993)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bae, S.W., Kim, J.-H., Chwa, K.-Y.: Optimal construction of the city Voronoi diagram. Internat. J. Comput. Geom. Appl. 19(2), 95–117 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order Voronoi diagrams. IEEE Transactions on Computers 36(11), 1349–1454 (1987)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee, M., Na, H.-S.: Farthest-polygon Voronoi diagrams. Comput. Geom. Theory Appl. 44, 234–247 (2011)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Gemsa, A., Lee, D.T., Liu, C.-H., Wagner, D.: Higher order city Voronoi diagrams. ArXiv e-prints, arXiv:1204.4374 (April 2012)Google Scholar
  11. 11.
    Görke, R., Shin, C.-S., Wolff, A.: Constructing the city Voronoi diagram faster. Internat. J. Comput. Geom. Appl. 18(4), 275–294 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Lee, D.T.: On k-nearest neighbor Voronoi diagrams in the plane. IEEE Trans. Comput. 31(6), 478–487 (1982)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mulmuley, K.: A fast planar partition algorithm, I. J. Symbolic Comput. 10(3-4), 253–280 (1990)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Mulmuley, K.: On levels in arrangements and Voronoi diagrams. Discrete Comput. Geom. 6, 307–338 (1991)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Gemsa
    • 1
  • D. T. Lee
    • 2
    • 3
  • Chih-Hung Liu
    • 1
    • 2
  • Dorothea Wagner
    • 1
  1. 1.Karlsruhe Institute of TechnologyGermany
  2. 2.Academia SinicaTaiwan
  3. 3.National Chung Hsing UniversityTaiwan

Personalised recommendations