Kinetic Pie Delaunay Graph and Its Applications

  • Mohammad Ali Abam
  • Zahed Rahmati
  • Alireza Zarei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


We construct a new proximity graph, called the Pie Delaunay graph, on a set of n points which is a super graph of Yao graph and Euclidean minimum spanning tree (EMST). We efficiently maintain the Pie Delaunay graph where the points are moving in the plane. We use the kinetic Pie Delaunay graph to create a kinetic data structure (KDS) for maintenance of the Yao graph and the EMST on a set of n moving points in 2-dimensional space. Assuming x and y coordinates of the points are defined by algebraic functions of at most degree s, the structure uses O(n) space, O(nlogn) preprocessing time, and processes O(n 2 λ 2s + 2(n)β s + 2(n)) events for the Yao graph and O(n 2 λ 2s + 2(n)) events for the EMST, each in O(log2 n) time. Here, λ s (n) =  s (n) is the maximum length of Davenport-Schinzel sequences of order s on n symbols. Our KDS processes nearly cubic events for the EMST which improves the previous bound O(n 4) by Rahmati et al. [1].


Euclidean minimum spanning tree Yao graph Pie Delaunay triangulation kinetic data structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rahmati, Z., Zarei, A.: Kinetic Euclidean Minimum Spanning Tree in the Plane. In: Iliopoulos, C.S., Smyth, W.F. (eds.) IWOCA 2011. LNCS, vol. 7056, pp. 261–274. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Abam, M.A., de Berg, M., Gudmundsson, J.: A simple and efficient kinetic spanner. Comput. Geom. Theory Appl. 43, 251–256 (2010)zbMATHCrossRefGoogle Scholar
  3. 3.
    Alexandron, G., Kaplan, H., Sharir, M.: Kinetic and dynamic data structures for convex hulls and upper envelopes. Comput. Geom. Theory Appl. 36(2), 144–158 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1997, pp. 747–756. Society for Industrial and Applied Mathematics, Philadelphia (1997)Google Scholar
  5. 5.
    Kaplan, H., Rubin, N., Sharir, M.: A kinetic triangulation scheme for moving points in the plane. Comput. Geom. Theory Appl. 44(4), 191–205 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Yao, A.C.C.: On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput. 11(4), 721–736 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Guibas, L.J., Mitchell, J.S.B.: Voronoi Diagrams of Moving Points in the Plane. In: Schmidt, G., Berghammer, R. (eds.) WG 1991. LNCS, vol. 570, pp. 113–125. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  8. 8.
    Fu, J.J., Lee, R.C.T.: Minimum spanning trees of moving points in the plane. IEEE Trans. Comput. 40(1), 113–118 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Agarwal, P.K., Eppstein, D., Guibas, L.J., Henzinger, M.R.: Parametric and kinetic minimum spanning trees. In: FOCS, pp. 596–605. IEEE Computer Society (1998)Google Scholar
  10. 10.
    Basch, J.: Kinetic data structures. PhD Thesis, Stanford University (1999)Google Scholar
  11. 11.
    Basch, J., Guibas, L.J., Zhang, L.: Proximity problems on moving points. In: Proceedings of the Thirteenth Annual Symposium on Computational Geometry, SCG 1997, pp. 344–351. ACM, New York (1997)CrossRefGoogle Scholar
  12. 12.
    Chew, L.P., Dyrsdale III, R.L.S.: Voronoi diagrams based on convex distance functions. In: Proceedings of the First Annual Symposium on Computational Geometry, SCG 1985, pp. 235–244. ACM, New York (1985)CrossRefGoogle Scholar
  13. 13.
    Agarwal, K.P., Sharir, M.: Davenport–schinzel sequences and their geometric applications. Technical report, Durham, NC, USA (1995)Google Scholar
  14. 14.
    Kruskal, J.B.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society, 7 (1956)Google Scholar
  15. 15.
    Prim, R.C.: Shortest connection networks and some generalizations. Bell Systems Technical Journal, 1389–1401 (November 1957)Google Scholar
  16. 16.
    Katoh, N., Tokuyama, T., Iwano, K.: On minimum and maximum spanning trees of linearly moving points. In: Proceedings of the 33rd Annual Symposium on Foundations of Computer Science, SFCS 1992, pp. 396–405. IEEE Computer Society, Washington, DC (1992)Google Scholar
  17. 17.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Chan, T.M.: On levels in arrangements of curves. Discrete and Computational Geometry 29, 375–393 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Marcus, A., Tardos, G.: Intersection reverse sequences and geometric applications. J. Comb. Theory Ser. A 113(4), 675–691 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Ali Abam
    • 1
    • 2
  • Zahed Rahmati
    • 3
  • Alireza Zarei
    • 4
  1. 1.Dept. of Computer EngineeringSharif University of TechnologyTehranIran
  2. 2.Institute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Dept. of Computer ScienceUniversity of VictoriaVictoriaCanada
  4. 4.Dept. of Mathematical ScienceSharif University of TechnologyTehranIran

Personalised recommendations