Competitive Analysis of Maintaining Frequent Items of a Stream

  • Yiannis Giannakopoulos
  • Elias Koutsoupias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


We study the well-known frequent items problem in data streams from a competitive analysis point of view. We consider the standard worst-case input model, as well as a weaker distributional adversarial setting. We are primarily interested in the single-slot memory case and for both models we give (asymptotically) tight bounds of \(\varTheta(\sqrt{N})\) and \(\varTheta(\sqrt[3]{N})\) respectively, achieved by very simple and natural algorithms, where N is the stream’s length. We also provide lower bounds, for both models, in the more general case of arbitrary memory sizes of k ≥ 1.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C.: Data Streams: Models and Algorithms. Advances in Database Systems. Springer (2007)Google Scholar
  2. 2.
    Alon, N., Matias, Y., Szegedy, M.: The Space Complexity of Approximating the Frequency Moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized secretary problems. ACM SIGecom Exchanges 7(2), 1–11 (2008)CrossRefGoogle Scholar
  4. 4.
    Becchetti, L., Chatzigiannakis, I., Giannakopoulos, Y.: Streaming techniques and data aggregation in networks of tiny artefacts. Computer Science Review 5(1), 27–46 (2011)CrossRefGoogle Scholar
  5. 5.
    Becchetti, L., Koutsoupias, E.: Competitive Analysis of Aggregate Max in Windowed Streaming. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 156–170. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  7. 7.
    Boyer, R.S., Moore, J.S.: MJRTY-A Fast Majority Vote Algorithm. Technical report, Texas University at Austin, Insitute for Computing Science and Computer Applications (1981)Google Scholar
  8. 8.
    Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proceedings of the VLDB Endowment 1(2), 1530–1541 (2008)Google Scholar
  9. 9.
    Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over sliding windows. SIAM Journal on Computing, 635–644 (2002)Google Scholar
  10. 10.
    Ferguson, T.S.: Who solved the secretary problem? Statistical Science 4(3), 282–296 (1989)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fiat, A., Woeginger, G.J. (eds.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)MATHGoogle Scholar
  12. 12.
    Gama, J., Geber, M.M. (eds.): Learning from Data Streams: Processing Techniques in Sensor Networks. Springer (2007)Google Scholar
  13. 13.
    Liu, L., Tamer Ozsu, M. (eds.): Encyclopedia of Database Systems. Springer (2009)Google Scholar
  14. 14.
    Misra, J., Gries, D.: Finding repeated elements. Science of Computer Programming 2(2), 143–152 (1982)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press (2005)Google Scholar
  16. 16.
    Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. In: Proceedings of FOCS 1978, pp. 253–258 (1978)Google Scholar
  17. 17.
    Muthukrishnan, S.: Data streams: Algorithms and applications. Now Publishers Inc. (2005)Google Scholar
  18. 18.
    Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity. In: Proceedings of FOCS 1977, pp. 222–227 (1977)Google Scholar
  19. 19.
    Yi, K., Zhang, Q.: Multidimensional online tracking. ACM Trans. Algorithms 8(2), 12:1–12:16 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yiannis Giannakopoulos
    • 1
  • Elias Koutsoupias
    • 1
  1. 1.Department of InformaticsUniversity of AthensGreece

Personalised recommendations