Access Graphs Results for LRU versus FIFO under Relative Worst Order Analysis

  • Joan Boyar
  • Sushmita Gupta
  • Kim S. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


Access graphs, which have been used previously in connection with competitive analysis to model locality of reference in paging, are considered in connection with relative worst order analysis. In this model, FWF is shown to be strictly worse than both LRU and FIFO on any access graph. LRU is shown to be strictly better than FIFO on paths and cycles, but they are incomparable on some families of graphs which grow with the length of the sequences.


Online Algorithm Competitive Analysis Page Fault Cycle Graph Path Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S., von Stengel, B., Werchner, R.: A combined BIT and TIMESTAMP algorithm for the list update problem. Inform. Proc. Letters 56, 135–139 (1995)zbMATHCrossRefGoogle Scholar
  2. 2.
    Albers, S., Westbrook, J.: Self-Organizing Data Structures. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 13–51. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Bentley, J.L., McGeoch, C.C.: Amortized analyses of self-organizing sequential search heuristics. Comm. ACM 28, 404–411 (1985)CrossRefGoogle Scholar
  4. 4.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press (1998)Google Scholar
  5. 5.
    Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality of reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms. ACM Transactions on Algorithms 3(2), article no. 22 (2007)Google Scholar
  7. 7.
    Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for LRU versus FIFO under relative worst order analysis, arXiv:1204.4047v1 [cs.DS] (2012)Google Scholar
  9. 9.
    Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Denning, P.J.: The working set model for program behaviour. Comm. ACM 11(5), 323–333 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Denning, P.J.: Working sets past and present. IEEE Transactions on Software Engineering 6(1), 64–84 (1980)CrossRefGoogle Scholar
  12. 12.
    Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algorithms. SIGACT News 36(3), 67–81 (2005)CrossRefGoogle Scholar
  13. 13.
    Ehmsen, M.R., Kohrt, J.S., Larsen, K.S.: List Factoring and Relative Worst Order Analysis. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534, pp. 118–129. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Fiat, A., Karlin, A.R.: Randomized and multipointer paging with locality of reference. In: 27th Annual ACM Symposium on Theory of Computing, pp. 626–634 (1995)Google Scholar
  15. 15.
    Fiat, A., Mendel, M.: Truly online paging with locality of reference. In: 38th Annual Symposium on Foundations of Computer Science, pp. 326–335 (1997), extended version: CoRR, abs/cs/0601127 (2006)Google Scholar
  16. 16.
    Fiat, A., Rosen, Z.: Experimental studies of access graph based heuristics: Beating the LRU standard? In: 8th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 63–72 (1997)Google Scholar
  17. 17.
    Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Systems Tech. Journal 45(9), 1563–1581 (1966)Google Scholar
  18. 18.
    Irani, S., Karlin, A.R., Phillips, S.: Strongly competitive algorithms for paging with locality of reference. SIAM J. Comput. 25(3), 477–497 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of the ACM 47(4), 617–643 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching. Algorithmica 3, 79–119 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM J. Comput. 30(3), 906–922 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Comm. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Joan Boyar
    • 1
  • Sushmita Gupta
    • 1
  • Kim S. Larsen
    • 1
  1. 1.University of Southern DenmarkOdenseDenmark

Personalised recommendations