Asynchronous Rumor Spreading in Preferential Attachment Graphs

  • Benjamin Doerr
  • Mahmoud Fouz
  • Tobias Friedrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

We show that the asynchronous push-pull protocol spreads rumors in preferential attachment graphs (as defined by Barabási and Albert) in time \(O(\sqrt{\log n})\) to all but a lower order fraction of the nodes with high probability. This is significantly faster than what synchronized protocols can achieve; an obvious lower bound for these is the average distance, which is known to be Θ(logn/loglogn).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24, 5–34 (2004)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bollobás, B., Thomason, A.: On Richardson’s Model on the Hypercube. Cambridge University Press (1997)Google Scholar
  4. 4.
    Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures & Algorithms 18, 279–290 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Transactions on Information Theory 52, 2508–2530 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with conductance. In: 42nd ACM Symposium on Theory of Computing (STOC), pp. 399–408 (2010)Google Scholar
  7. 7.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks. Theoretical Computer Science 412, 2602–2610 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chung, F.R.K., Lu, L.: The average distance in a random graph with given expected degrees. Internet Mathematics 1, 91–113 (2003)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. Operating Systems Review 22, 8–32 (1988)CrossRefGoogle Scholar
  10. 10.
    Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom Rumor Spreading: Expanders, Push vs. Pull, and Robustness. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 366–377. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: 43rd ACM Symposium on Theory of Computing (STOC), pp. 21–30 (2011)Google Scholar
  12. 12.
    Dommers, S., van der Hofstad, R., Hooghiemstray, G.: Diameters in preferential attachment models. Journal of Statistical Physics 139, 72–107 (2010)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Elsässer, R.: On the communication complexity of randomized broadcasting in random-like graphs. In: 18th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 148–157 (2006)Google Scholar
  14. 14.
    Evans, M., Hastings, N., Peacock, B.: Statistical Distributions, 3rd edn. John Wiley & Sons, Inc. (2000)Google Scholar
  15. 15.
    Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures & Algorithms 1, 447–460 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Fill, J.A., Pemantle, R.: Percolation, first-passage percolation, and covering times for Richardson’s model on the n-cube. Annals of Applied Probability 3, 593–629 (1993)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Fountoulakis, N., Panagiotou, K.: Rumor Spreading on Random Regular Graphs and Expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010, LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  18. 18.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1642–1660 (2012)Google Scholar
  19. 19.
    Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: 28th International Symposium on Theoretical Aspects of Computer Science (STACS), pp. 57–68 (2011)Google Scholar
  21. 21.
    Janson, S.: One, two and three times logn/n for paths in a complete graph with random weights. Combinatorics, Probability & Computing 8, 347–361 (1999)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: 41st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 565–574 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benjamin Doerr
    • 1
  • Mahmoud Fouz
    • 2
  • Tobias Friedrich
    • 1
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Universität des SaarlandesSaarbrückenGermany

Personalised recommendations