Sorted Range Reporting

  • Yakov Nekrich
  • Gonzalo Navarro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


We consider a variant of the orthogonal range reporting problem when all points should be reported in the sorted order of their x-coordinates. We show that reporting two-dimensional points with this additional condition can be organized (almost) as efficiently as the standard range reporting. Moreover, our results generalize and improve the previously known results for the orthogonal range successor problem and can be used to obtain better solutions for some stringology problems.


Query Time Online Modus Alphabet Size Left Child Range Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, P., Erickson, J.: Geometric range searching and its relatives. Contemporary Mathematics 223, 1–56 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. Theor. Comput. Sci. 321(1), 5–12 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brodal, G.S., Fagerberg, R., Greve, M., López-Ortiz, A.: Online Sorted Range Reporting. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 173–182. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Brodal, G.S., Tsakalidis, K.: Dynamic Planar Range Maxima Queries. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 256–267. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Chan, T.M., Larsen, K.G., Patrascu, M.: Orthogonal range searching on the RAM, revisited. In: Proc. 27th SoCG, pp. 1–10 (2011)Google Scholar
  6. 6.
    Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Crochemore, M., Iliopoulos, C.S., Kubica, M., Rahman, M.S., Walen, T.: Improved algorithms for the range next value problem and applications. In: Proc. 25th STACS, pp. 205–216 (2008)Google Scholar
  8. 8.
    Crochemore, M., Iliopoulos, C.S., Rahman, M.S.: Finding Patterns in Given Intervals. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 645–656. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Fischer, J.: Optimal Succinctness for Range Minimum Queries. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: Proc. 16th STOC, pp. 135–143 (1984)Google Scholar
  12. 12.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: Proc. 14th SODA, pp. 841–850 (2003)Google Scholar
  13. 13.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology. Cambridge University Press (1997)Google Scholar
  14. 14.
    Keller, O., Kopelowitz, T., Lewenstein, M.: Range Non-overlapping Indexing and Successive List Indexing. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 625–636. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Lenhof, H.-P., Smid, M.H.M.: Using persistent data structures for adding range restrictions to searching problems. RAIRO Theor. Inf. and Appl. 28(1), 25–49 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theor. Comput. Sci. 387(3), 332–347 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. J. Comput. Syst. Sci. 57(1), 37–49 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Navarro, G., Nekrich, Y.: Top-k document retrieval in optimal time and linear space. In: Proc. 22nd SODA, pp. 1066–1077 (2012)Google Scholar
  19. 19.
    Pătraşcu, M., Thorup, M.: Time-space trade-offs for predecessor search. In: Proc. 38th STOC, pp. 232–240 (2006)Google Scholar
  20. 20.
    van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient priority queue. Math. Sys. Theory 10, 99–127 (1977)zbMATHCrossRefGoogle Scholar
  21. 21.
    Yu, C.-C., Hon, W.-K., Wang, B.-F.: Improved data structures for the orthogonal range successor problem. Comput. Geom. Theory Appl. 44, 148–159 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Yu, C.-C., Wang, B.-F., Kuo, C.-C.: Efficient Indexes for the Positional Pattern Matching Problem and Two Related Problems over Small Alphabets. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 13–24. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Yakov Nekrich
    • 1
  • Gonzalo Navarro
    • 1
  1. 1.Department of Computer ScienceUniversity of ChileChile

Personalised recommendations