Non-preemptive Speed Scaling

  • Antonios Antoniadis
  • Chien-Chung Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)

Abstract

We consider the following variant of the speed scaling problem introduced by Yao, Demers, and Shenker. We are given a set of jobs and we have a variable-speed processor to process them. The higher the processor speed, the higher the energy consumption. Each job is associated with its own release time, deadline, and processing volume. The objective is to find a feasible schedule that minimizes the energy consumption. Moreover, no preemption of jobs is allowed.

Unlike the preemptive version that is known to be in P, the non-preemptive version of speed scaling is strongly NP-hard. In this work, we present a constant factor approximation algorithm for it. The main technical idea is to transform the problem into the unrelated machine scheduling problem with Lp-norm objective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albers, S.: Energy-efficient algorithms. Comm. of the ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel machines. In: STOC 2005, pp. 331–337 (2005)Google Scholar
  3. 3.
    Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temperature. J. ACM 54, 1 (2007)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bartal, Y., Leonardi, S., Shallom, G., Sitters, R.: On the Value of Preemption in Scheduling. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 39–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Braun, O., Schmid, G.: Parallel processor scheduling with limited number of preemptions. SIAM J. Computing 32, 671–680 (2003)MATHCrossRefGoogle Scholar
  6. 6.
    Brooks, D.M., Bose, P., Schuster, S.E., Jacobson, H., Kudva, P.N., Buyuktosunoglu, A., Wellman, J.-D., Zyuban, V., Gupta, M., Cook, P.W.: Power-aware microarchitecture: Design and modeling challenges for next-generation microprocessors. IEEE Micro 20(6), 26–44 (2000)CrossRefGoogle Scholar
  7. 7.
    Chen, J.-J., Kuo, T.-W., Lu, H.-I.: Power-Saving Scheduling for Weakly Dynamic Voltage Scaling Devices. In: Dehne, F., López-Ortiz, A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 338–349. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chuzhoy, J., Codenotti, P.: Resource Minimization Job Scheduling. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 70–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Chuzhoy, J., Ostrovsky, R., Rabani, Y.: Approximation algorithms for the job interval selection problem and related scheduling problems. Math. Oper. Res. 31(4), 730–738 (2006)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Dimpsey, R.T., Iyer, R.K.: Performance degradation due to multiprogramming and system overheads in real workloads: Case study on a shared memory multiprocessor. In: International Conference on Supercomputing 1990, pp. 227–238 (1990)Google Scholar
  11. 11.
    Etsion, Y., Tsafrir, D., Feitelson, D.G.: Effects of clock resolution on the scheduling of interactive and soft real-time processes. In: SIGMETRICS 1990, pp. 172–183 (1990)Google Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-Completeness. W.H. Freeman (1979)Google Scholar
  13. 13.
    Natarajan, C., Sharma, S., Iyer, R.K.: Measurement-based characterization of global memory and network connection, operating system and parallelization overheads: Case study on a shared memory multiprocessor. In: Annual International Symposium on Computer Architecture, vol. 21, pp. 71–80 (1994)Google Scholar
  14. 14.
    Li, M., Liu, B.J., Yao, F.F.: Min-energy voltage allocation for tree-structured tasks. J. Combinatorial Optimization 11, 305–319 (2006)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete voltage schedules. SIAM J. on Computing 35, 658–671 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: FOCS 1995, 374-382 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Antonios Antoniadis
    • 1
  • Chien-Chung Huang
    • 1
  1. 1.Department of Computer ScienceHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations