Minimum Convex Partitions and Maximum Empty Polytopes

  • Adrian Dumitrescu
  • Sariel Har-Peled
  • Csaba D. Tóth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


Let S be a set of n points in d-space. A convex Steiner partition is a tiling of conv(S) with empty convex bodies. For every integer d, we show that S admits a convex Steiner partition with at most ⌈(n − 1)/d⌉ tiles. This bound is the best possible for points in general position in the plane, and it is best possible apart from constant factors in every fixed dimension d ≥ 3. We also give the first constant-factor approximation algorithm for computing a minimum Steiner convex partition of a planar point set in general position.

Establishing a tight lower bound for the maximum volume of a tile in a Steiner partition of any n points in the unit cube is equivalent to a famous problem of Danzer and Rogers. It is conjectured that the volume of the largest tile is ω(1/n) in any dimension d ≥ 2. Here we give a (1 − ε)-approximation algorithm for computing the maximum volume of an empty convex body amidst n given points in the d-dimensional unit box [0,1] d .


Convex Hull Convex Body General Position Unit Cube Convex Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Krasser, H.: The point set order type data base: A collection of applications and results. In: Proc. 13th Canadian Conf. on Comput. Geom., Waterloo, pp. 17–20 (2001)Google Scholar
  2. 2.
    Alon, N., Bárány, I., Füredi, Z., Kleitman, D.: Point selections and weak ε-nets for convex hulls. Combinatorics, Probability & Computing 1, 189–200 (1992)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bambah, R.P., Woods, A.C.: On a problem of Danzer. Pacific J. Math. 37(2), 295–301 (1971)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Beck, J., Chen, W.: Irregularities of Distributions. Cambridge Tracts in Mathematics, vol. 89. Cambridge University Press, Cambridge (1987)CrossRefGoogle Scholar
  5. 5.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer (2008)Google Scholar
  6. 6.
    Dasgupta, S., Papadimitriou, C., Vazirani, U.: Algorithms. McGraw-Hill, New York (2008)Google Scholar
  7. 7.
    Dumitrescu, A., Har-Peled, S., Tóth, C.D.: Minimum convex partitions and maximum empty polytopes, arXiv:1112.1124Google Scholar
  8. 8.
    Dumitrescu, A., Tóth, C.D.: Minimum weight convex Steiner partitions. Algorithmica 60(3), 627–652 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Eppstein, D., Overmars, M., Rote, G., Woeginger, G.: Finding minimum area k-gons. Discrete Comput. Geom. 7(1), 45–58 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fevens, T., Meijer, H., Rappaport, D.: Minimum convex partition of a constrained point set. Discrete Appl. Math. 109(1-2), 95–107 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Füredi, Z., Pach, J.: Traces of finite sets: extremal problems and geometric applications. In: Frankl, P., Füredi, Z., Katona, G., Miklós, D. (eds.) Extremal Problems for Finite Sets, Budapest. Bolyai Soc. Math. Studies, vol. 3, pp. 251–282 (1994)Google Scholar
  12. 12.
    García López, J., Nicolás, C.: Planar point sets with large minimum convex partitions. In: Proc. 22nd European Workshop on Comput. Geom., pp. 51–54 (2006)Google Scholar
  13. 13.
    Grantson, M., Levcopoulos, C.: A Fixed Parameter Algorithm for the Minimum Number Convex Partition Problem. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 83–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Har-Peled, S.: An output sensitive algorithm for discrete convex hulls. Comput. Geom. Theory Appl. 10, 125–138 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hershberger, J., Suri, S.: Applications of a semi-dynamic convex hull algorithm. BIT 32(2), 249–267 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Horton, J.: Sets with no empty convex 7-gons. Canadian Math. Bulletin 26, 482–484 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Knauer, C., Spillner, A.: Approximation Algorithms for the Minimum Convex Partition Problem. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 232–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Matoušek, J.: Geometric Discrepancy: An Illustrated Guide. Springer (1999)Google Scholar
  19. 19.
    Matoušek, J.: Lectures on Discrete Geometry. Springer (2002)Google Scholar
  20. 20.
    Neumann-Lara, V., Rivera-Campo, E., Urrutia, J.: A note on convex partitions of a set of points in the plane. Graphs and Combinatorics 20(2), 223–231 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sakai, T., Urrutia, J.: Convex partitions of point sets in the plane. In: Proc. 7th Japan Conf. on Comput. Geom. and Graphs, Kanazawa. JAIST (2009)Google Scholar
  22. 22.
    Spillner, A.: A fixed parameter algorithm for optimal convex partitions. J. Discrete Algorithms 6(4), 561–569 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Valtr, P.: Sets in ℝd with no large empty convex subsets. Discrete Mathematics 108(1-3), 115–124 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Adrian Dumitrescu
    • 1
  • Sariel Har-Peled
    • 2
  • Csaba D. Tóth
    • 3
    • 4
  1. 1.Computer ScienceUniversity of Wisconsin–MilwaukeeUSA
  2. 2.Computer ScienceUniversity of Illinois at Urbana–ChampaignUSA
  3. 3.Mathematics and StatisticsUniv. of CalgaryCanada
  4. 4.Comp. Sci.Tufts UniversityCanada

Personalised recommendations