Do Directional Antennas Facilitate in Reducing Interferences?

  • Rom Aschner
  • Matthew J. Katz
  • Gila Morgenstern
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


The coverage area of a directional antenna located at point p is a circular sector of angle α, whose orientation and radius can be adjusted. The interference at p, denoted I(p), is the number of antennas that cover p, and the interference of a communication graph G = (P,E) is I(G) =  max {I(p) : p ∈ P}. In this paper we address the question in its title. That is, we study several variants of the following problem: What is the minimum interference I, such that for any set P of n points in the plane, representing transceivers equipped with a directional antenna of angle α, one can assign orientations and ranges to the points in P, so that the induced communication graph G is either connected or strongly connected and I(G) ≤ I.

In the asymmetric model (i.e., G is required to be strongly connected), we prove that I = O(1) for α < 2π/3, in contrast with I = Θ(logn) for α = 2π, proved by Korman [12]. In the symmetric model (i.e., G is required to be connected), the situation is less clear. We show that I = Θ(n) for α < π/2, and prove that \(I=O(\sqrt{n})\) for π/2 ≤ α ≤ 3π/2, by applying the Erdös-Szekeres theorem. The corresponding result for α = 2π is \(I=\Theta(\sqrt{n})\), proved by Halldórsson and Tokuyama [10].

As in [12] and [10] who deal with the case α = 2π, in both models, we assign ranges that are bounded by some constant c, assuming that UDG(P) (i.e., the unit disk graph over P) is connected. Moreover, the \(O(\sqrt{n})\) bound in the symmetric model reduces to \(O(\sqrt{\Delta})\), where Δ is the maximum degree in UDG(P).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. CoRR abs/1106.0855 (2011)Google Scholar
  2. 2.
    Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas. CoRR abs/1108.0492 (2011)Google Scholar
  3. 3.
    Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M.J., Maheshwari, A.: Switching to Directional Antennas with Constant Increase in Radius and Hop Distance. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 134–146. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does topology control reduce interference? In: Proc. 5th ACM Internat. Sympos. on Mobile Ad Hoc Networking and Computing, pp. 9–19 (2004)Google Scholar
  5. 5.
    Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: 20th ACM Sympos. on Parallelism in Algorithms and Architectures, pp. 344–351 (2008)Google Scholar
  6. 6.
    Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Computational Geometry: Theory and Applications 44(9), 477–485 (2011)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carmi, P., Katz, M.J., Mitchell, J.S.B.: The minimum-area spanning tree problem. Computational Geometry: Theory and Applications 35(3), 218–225 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Damian, M., Flatland, R.: Spanning properties of graphs induced by directional antennas. In: Electronic Proc. 20th Fall Workshop on Computational Geometry. Stony Brook, NY (2010)Google Scholar
  9. 9.
    Erdös, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Mathematica 2, 463–470 (1935)MathSciNetMATHGoogle Scholar
  10. 10.
    Halldórsson, M.M., Tokuyama, T.: Minimizing interference of a wireless ad-hoc network in a plane. Theor. Comput. Sci. 402(1), 29–42 (2008)MATHCrossRefGoogle Scholar
  11. 11.
    Johansson, T., Carr-Motycková, L.: Reducing interference in ad hoc networks through topology control. In: Proc. of the 2005 Joint Workshop on Foundations of Mobile Computing, pp. 17–23 (2005)Google Scholar
  12. 12.
    Korman, M.: Minimizing Interference in Ad-Hoc Networks with Bounded Communication Radius. In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS, vol. 7074, pp. 80–89. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S., Rolim, J.D.P. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, ch. 3, pp. 59–84. Springer (2011)Google Scholar
  14. 14.
    Moaveni-Nejad, K., Li, X.-Y.: Low-interference topology control for wireless ad hoc networks. Ad Hoc & Sensor Wireless Networks 1(1-2) (2005)Google Scholar
  15. 15.
    von Rickenbach, P., Schmid, S., Wattenhofer, R., Zollinger, A.: A robust interference model for wireless ad-hoc networks. In: Proc. 19th IEEE Internat. Parallel and Distributed Processing Sympos. (2005)Google Scholar
  16. 16.
    Tan, H., Lou, T., Lau, F.C.M., Wang, Y., Chen, S.: Minimizing Interference for the Highway Model in Wireless Ad-Hoc and Sensor Networks. In: Černá, I., Gyimóthy, T., Hromkovič, J., Jefferey, K., Králović, R., Vukolić, M., Wolf, S. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 520–532. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rom Aschner
    • 1
  • Matthew J. Katz
    • 1
  • Gila Morgenstern
    • 2
  1. 1.Department of Computer ScienceBen-Gurion UniversityIsrael
  2. 2.Caesarea Rothschild InstituteUniversity of HaifaIsrael

Personalised recommendations