Annotating Simplices with a Homology Basis and Its Applications

  • Oleksiy Busaryev
  • Sergio Cabello
  • Chao Chen
  • Tamal K. Dey
  • Yusu Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


Let \({\cal K}\) be a simplicial complex and g the rank of its p-th homology group \({\sf H}_{p}({\cal K})\) defined with ℤ2 coefficients. We show that we can compute a basis H of \({\sf H}_{p}({\cal K})\) and annotate each p-simplex of \({\cal K}\) with a binary vector of length g with the following property: the annotations, summed over all p-simplices in any p-cycle z, provide the coordinate vector of the homology class [z] in the basis H. The basis and the annotations for all simplices can be computed in O(n ω ) time, where n is the size of \({\cal K}\) and ω < 2.376 is a quantity so that two n×n matrices can be multiplied in O(n ω ) time. The precomputed annotations permit answering queries about the independence or the triviality of p-cycles efficiently.

Using annotations of edges in 2-complexes, we derive better algorithms for computing optimal basis and optimal homologous cycles in 1 - dimensional homology. Specifically, for computing an optimal basis of \({\sf H}_{1}({\cal K})\), we improve the previously known time complexity from O(n 4) to O(n ω  + n 2 g ω − 1). Here n denotes the size of the 2-skeleton of \({\cal K}\) and g the rank of \({\sf H}_{1}({\cal K})\). Computing an optimal cycle homologous to a given 1-cycle is NP-hard even for surfaces and an algorithm taking 2 O(g) nlogn time is known for surfaces. We extend this algorithm to work with arbitrary 2-complexes in O(n ω ) + 2 O(g) n 2logn time using annotations.


Simplicial complex topology homology basis optimal cycles matrix multiplication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabello, S., Colin de Verdière, É., Lazarus, F.: Finding cycles with topological properties in embedded graphs. SIAM J. Disc. Math. 25(4), 1600–1614 (2011)zbMATHCrossRefGoogle Scholar
  2. 2.
    Chambers, E., Erickson, J., Nayyeri, A.: Minimum cuts and shortest homologous cycles. In: Proc. ACM Symp. on Computational Geometry (SOCG), pp. 377–385 (2009)Google Scholar
  3. 3.
    Chen, C., Freedman, D.: Hardness results for homology localization. Discrete and Computational Geometry 45(3), 425–448 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Dey, T.K., Sun, J., Wang, Y.: Approximating loops in a shortest homology basis from point data. In: Proc. ACM Symp. on Computational Geometry (SOCG), pp. 166–175 (2010)Google Scholar
  5. 5.
    Erickson, J., Nayyeri, A.: Minimum cuts and shortest non-separating cycles via homology covers. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1166–1176 (2011)Google Scholar
  6. 6.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 1038–1046 (2005)Google Scholar
  7. 7.
    Dey, T.K., Hirani, A., Krishnamoorthy, B.: Optimal homologous cycles, total unimodularity, and linear programming. SIAM J. Comput. 40, 1026–1044 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb. Comput. 9(3), 251–280 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Chen, C., Freedman, D.: Quantifying homology classes. In: Proc. Symp. on Theoretical Aspects of Computer Science (STACS), pp. 169–180 (2008)Google Scholar
  10. 10.
    Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms for min cut and max flow in undirected planar graphs. In: Proc. ACM Symp. on Theory of Computing (STOC), pp. 313–322 (2011)Google Scholar
  11. 11.
    Bunch, J., Hopcroft, J.: Triangular factorization and inversion by fast matrix multiplication. Math. Comp. 28, 231–236 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Ibarra, O., Moran, S., Hui, R.: A generalization of the fast LUP matrix decomposition algorithm and applications. Journal of Algorithms 3(1), 45–56 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Jeannerod, C.: LSP matrix decomposition revisited (2006),

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Oleksiy Busaryev
    • 1
  • Sergio Cabello
    • 2
  • Chao Chen
    • 3
  • Tamal K. Dey
    • 1
  • Yusu Wang
    • 1
  1. 1.Department of Computer Science and EngineeringThe Ohio State UniversityColumbusUSA
  2. 2.Department of MathematicsUniversity of LjubljanaSlovenia
  3. 3.Institute of Science and Technology AustriaKlosterneuburgAustria

Personalised recommendations