Effective Computation of Immersion Obstructions for Unions of Graph Classes

  • Archontia C. Giannopoulou
  • Iosif Salem
  • Dimitris Zoros
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


In the final paper of the Graph Minors series [Neil Robertson and Paul D. Seymour. Graph minors XXIII. Nash-Williams’ immersion conjecture J. Comb. Theory, Ser. B, 100(2):181–205, 2010.], N. Robertson and P. Seymour proved that graphs are well-quasi-ordered with respect to the immersion relation. A direct implication of this theorem is that each class of graphs that is closed under taking immersions can be fully characterized by forbidding a finite set of graphs (immersion obstruction set). However, as the proof of the well-quasi-ordering theorem is non-constructive, there is no generic procedure for computing such a set. Moreover, it remains an open issue to identify for which immersion-closed graph classes the computation of those sets can become effective. By adapting the tools that where introduced in [Isolde Adler, Martin Grohe and Stephan Kreutzer. Computing excluded minors, SODA, 2008: 641-650.] for the effective computation of obstruction sets for the minor relation, we expand the horizon of the computability of obstruction sets for immersion-closed graph classes. In particular, we prove that there exists an algorithm that, given the immersion obstruction sets of two graph classes that are closed under taking immersions, outputs the immersion obstruction set of their union.


Immersions Obstructions Unique Linkage Theorem Tree-width 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I., Grohe, M., Kreutzer, S.: Computing excluded minors. In: Teng, S.-H. (ed.) SODA, pp. 641–650. SIAM (2008)Google Scholar
  2. 2.
    Bodlaender, H.L., Deogun, J.S., Jansen, K., Kloks, T., Kratsch, D., Müller, H., Tuza, Z.: Rankings of graphs. SIAM J. Discrete Math. 11(1), 168–181, (electronic) (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cattell, K., Dinneen, M.J., Downey, R.G., Fellows, M.R., Langston, M.A.: On computing graph minor obstruction sets. Theor. Comput. Sci. 233(1-2), 107–127 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Courcelle, B., Downey, R.G., Fellows, M.R.: A note on the computability of graph minor obstruction sets for monadic second order ideals. J. UCS 3(11), 1194–1198 (1997)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. Journal of the ACM 52(6), 866–893 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    DeVos, M., Dvořák, Z., Fox, J., McDonald, J., Mohar, B., Scheide, D.: Minimum degree condition forcing complete graph immersion. ArXiv e-prints (January 2011)Google Scholar
  7. 7.
    Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)Google Scholar
  8. 8.
    Fellows, M.R., Langston, M.A.: Nonconstructive tools for proving polynomial-time decidability. J. Assoc. Comput. Mach. 35(3), 727–739 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Langston, M.A.: On search, decision, and the efficiency of polynomial-time algorithms. J. Comput. System Sci. 49(3), 769–779 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Grohe, M., Kawarabayashi, K.I., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: STOC, pp. 479–488 (2011)Google Scholar
  11. 11.
    Kawarabayashi, K.I., Wollan, P.: A shorter proof of the graph minor algorithm: the unique linkage theorem. In: Schulman, L.J. (ed.) STOC, pp. 687–694. ACM (2010)Google Scholar
  12. 12.
    Lagergren, J.: The Size of an Interwine. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 520–531. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Mendelson, E.: Introduction to mathematical logic, 3rd edn. Chapman and Hall (1987)Google Scholar
  14. 14.
    Robertson, N., Seymour, P.D.: Graph minors. XXII. Irrelevant vertices in linkage problems (to appear)Google Scholar
  15. 15.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory. Series B 63(1), 65–110 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Combin. Theory Ser. B 62(2), 323–348 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B 89(1), 43–76 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Robertson, N., Seymour, P.D.: Graph minors. XXI. Graphs with unique linkages. J. Comb. Theory, Ser. B 99(3), 583–616 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Robertson, N., Seymour, P.D.: Graph minors XXIII. Nash-Williams’ immersion conjecture. J. Comb. Theory, Ser. B 100(2), 181–205 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Seese, D.: The structure of models of decidable monadic theories of graphs. Ann. Pure Appl. Logic 53(2), 169–195 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Archontia C. Giannopoulou
    • 1
  • Iosif Salem
    • 1
  • Dimitris Zoros
    • 1
  1. 1.Department of MathematicsNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations