Induced Disjoint Paths in AT-Free Graphs

  • Petr A. Golovach
  • Daniël Paulusma
  • Erik Jan van Leeuwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


Paths P 1,…,P k in a graph G = (V,E) are said to be mutually induced if for any 1 ≤ i < j ≤ k, P i and P j have neither common vertices nor adjacent vertices (except perhaps their end-vertices). The Induced Disjoint Paths problem is to test whether a graph G with k pairs of specified vertices (s i ,t i ) contains k mutually induced paths P i such that P i connects s i and t i for i = 1,…,k. This problem is known to be NP-complete already for k = 2. We prove that it can be solved in polynomial time for AT-free graphs even when k is part of the input. As a consequence, the problem of testing whether a given AT-free graph contains some graph H as an induced topological minor admits a polynomial-time algorithm, as long as H is fixed; we show that such an algorithm is essentially optimal by proving that the problem is W[1]-hard, even on a subclass of AT-free graphs, namely cobipartite graphs, when parameterized by |V H |. We also show that the problems k -in-a-Path and k -in-a-Tree can be solved in polynomial time, even when k is part of the input. These problems are to test whether a graph contains an induced path or induced tree, respectively, spanning k given vertices.


Polynomial Time Planar Graph Interval Graph Disjoint Path Chordal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belmonte, R., Golovach, P.A., Heggernes, P.: van’t Hof, P., Kaminski, M., Paulusma, D.: Detecting patterns in chordal graphs (preprint)Google Scholar
  2. 2.
    Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Disc. Math. 90, 85–92 (1991); See also Corrigendum. Disc. Math. 102, 109 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Broersma, H.J., Kloks, T., Kratsch, D., Müller, H.: Independent Sets in Asteroidal Triple-Free Graphs. SIAM J. Discrete Math. 12, 276–287 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chudnovsky, M., Seymour, P.D.: The three-in-a-tree problem. Combinatorica 30, 387–417 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Derhy, N., Picouleau, C.: Finding induced trees. Discrete Applied Mathematics 157, 3552–3557 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Corneil, D.G., Olariu, S., Stewart, L.: Asteroidal Triple-Free Graphs. SIAM J. Discrete Math. 10, 299–430 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Corneil, D.G., Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs in asteroidal triple-free graphs. SIAM J. Comput. 28, 1284–1297 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefGoogle Scholar
  9. 9.
    Fellows, M.R.: The Robertson-Seymour theorems: A survey of applications. In: Richter, R.B. (ed.) Proc. AMS-IMS-SIAM Joint Summer Research Conference. Contemporary Mathematics, vol. 89, pp. 1–18. Amer. Math. Soc., Providence (1989)Google Scholar
  10. 10.
    Fiala, J., Kamiński, M., Lidicky, B., Paulusma, D.: The k-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012)zbMATHCrossRefGoogle Scholar
  11. 11.
    Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced Disjoint Paths in Claw-Free Graphs. arXiv:1202.4419v1 [cs.DM] (2012)Google Scholar
  12. 12.
    Grohe, M., Kawarabayashi, K., Marx, D., Wollan, P.: Finding topological subgraphs is fixed-parameter tractable. In: Proc. STOC, pp. 479–488 (2011)Google Scholar
  13. 13.
    Karp, R.M.: On the complexity of combinatorial problems. Networks 5, 45–68 (1975)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Kloks, T., Kratsch, D., Müller, H.: On the structure of graphs with bounded asteroidal number. Graphs and Combinatorics 17, 295–306 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kobayashi, Y., Kawarabayashi, K.: A linear time algorithm for the induced disjoint paths problem in planar graphs. JCSS 78, 670–680 (2012)zbMATHGoogle Scholar
  16. 16.
    Kratsch, D.: Domination and total domination on asteroidal triple-free graphs. Discrete Applied Mathematics 99, 111–123 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Kratsch, D., Müller, H., Todinca, I.: Feedback Vertex Set and Longest Induced Path on AT-Free Graphs. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 309–321. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64Google Scholar
  19. 19.
    Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs. Discrete Applied Mathematics 157, 3540–3551 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lynch, J.F.: The equivalence of theorem proving and the interconnection problem. SIGDA Newsletter 5, 31–36 (1975)CrossRefGoogle Scholar
  21. 21.
    McDiarmid, C.J.H., Reed, B.A., Schrijver, A., Shepherd, F.B.: Induced Circuits in Planar Graphs. J. Comb. Theory B 60, 169–176 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Natarajan, S., Sprague, A.P.: Disjoint Paths in Circular Arc Graphs. Nord. J. Comput. 3, 256–270 (1996)MathSciNetGoogle Scholar
  23. 23.
    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory B 63, 65–110 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Stacho, J.: 3-Colouring AT-Free Graphs in Polynomial Time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 144–155. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr A. Golovach
    • 1
  • Daniël Paulusma
    • 1
  • Erik Jan van Leeuwen
    • 2
  1. 1.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUK
  2. 2.Dept. Computer and System SciencesUniversity of Rome “La Sapienza”RomaItaly

Personalised recommendations