A Single-Exponential FPT Algorithm for the K4-Minor Cover Problem

  • Eun Jung Kim
  • Christophe Paul
  • Geevarghese Philip
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7357)


Given an input graph G on n vertices and an integer k, the parameterized K 4 -minor cover problem asks whether there is a set S of at most k vertices whose deletion results in a K 4-minor free graph or, equivalently, in a graph of treewidth at most 2. The problem can thus also be called Treewidth-2 Vertex Deletion. This problem is inspired by two well-studied parameterized vertex deletion problems, Vertex Cover and Feedback Vertex Set, which can be expressed as Treewidth- t Vertex Deletion problems: t = 0 for Vertex Cover and t = 1 for Feedback Vertex Set. While a single-exponential FPT algorithm has been known for a long time for Vertex Cover, such an algorithm for Feedback Vertex Set was devised comparatively recently. While it is known to be unlikely that Treewidth- t Vertex Deletion can be solved in time c o(k)·n O(1), it was open whether the K 4 -minor cover could be solved in single-exponential FPT time, i.e. in c k ·n O(1) time. This paper answers this question in the affirmative.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bidyuk, B., Dechter, R.: Cutset Sampling for Bayesian Networks. Journal of Artificial Intelligence Research 28, 1–48 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. Journal of Computer and System Sciences 20(2), 219–230 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Robertson, N., Seymour, P.: Graph minors XX: Wagner’s conjecture. Journal of Combinatorial Theory B 92(2), 325–357 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Courcelle, B.: The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs. Information and Computation 85, 12–75 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Downey, R., Fellows, M.: Parameterized complexity. Springer (1999)Google Scholar
  6. 6.
    Niedermeier, R.: Invitation to fixed parameter algorithms. Oxford University Press (2006)Google Scholar
  7. 7.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)Google Scholar
  8. 8.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal of Computer and System Sciences 72(8), 1386–1396 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An O(2\(^{\mbox{O(k)}}\)n\(^{\mbox{3}}\)) FPT Algorithm for the Undirected Feedback Vertex Set Problem. Theory of Computing Systems 41(3), 479–492 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Cao, Y., Chen, J., Liu, Y.: On Feedback Vertex Set New Measure and New Structures. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: Proceedings of FOCS 2011, pp. 150–159 (2011)Google Scholar
  12. 12.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Nearly optimal FPT algorithms for Planar-\(\mathcal{F}\)-Deletion (2011) (unpublished manuscript)Google Scholar
  13. 13.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research Letters 32(4), 299–301 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. Journal of Computer and System Sciences 74(7), 1188–1198 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.: (Meta) Kernelization. In: Proceedings of FOCS 2009, pp. 629–638 (2009)Google Scholar
  16. 16.
    Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.: Bidimensionality and kernels. In: Proceedings of SODA 2010, pp. 503–510 (2010)Google Scholar
  17. 17.
    Fomin, F.V., Lokshtanov, D., Misra, N., Philip, G., Saurabh, S.: Hitting forbidden minors: Approximation and kernelization. In: Proceedings of STACS 2011, pp. 189–200 (2011)Google Scholar
  18. 18.
    Diestel, R.: Graph theory. Springer (2010)Google Scholar
  19. 19.
    Valdes, J., Tarjan, R., Lawler, E.: The recognition of series-parallel graphs. SIAM Journal on Computing 11, 298–313 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Bodlaender, H.L., de Fluiter, B.: Parallel Algorithms for Series Parallel Graphs. In: Díaz, J. (ed.) ESA 1996. LNCS, vol. 1136, pp. 277–289. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Journal of Algorithms, 1–16 (1998)Google Scholar
  22. 22.
    Kim, E.J., Paul, C., Philip, G.: A Single-Exponential FPT Algorithm for the K 4-Minor Cover Problem. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 119–130. Springer, Heidelberg (2012), Google Scholar
  23. 23.
    Joret, G., Paul, C., Sau, I., Saurabh, S., Thomassé, S.: Hitting and Harvesting Pumpkins. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 394–407. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a Bipartite Graph by Contracting Few Edges. In: Proceedings of FSTTCS 2011. LIPIcs, vol. 13, pp. 217–228 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eun Jung Kim
    • 1
  • Christophe Paul
    • 2
  • Geevarghese Philip
    • 3
  1. 1.CNRS, LAMSADEParisFrance
  2. 2.CNRS, LIRMMMontpellierFrance
  3. 3.MPIISaarbrückenGermany

Personalised recommendations