Extended Photometric Sampling for Surface Shape Recovery

  • Felipe Hernández-Rodríguez
  • Mario Castelán
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7329)

Abstract

Photometric sampling is a process where the surface normals of an object are estimated through the excitation of the object’s surface and a rotating light source around it. The method can be regarded as a special case of photometric stereo when extensive sampling is performed in order to calculate surface normals. The classic photometric sampling approach considers only variations around the azimuth angle of the moving light source. As a consequence, additional attention has to be be paid to the recovery of the light source directions and the removal of specular and shadowed regions. This paper investigates the effect of including variations around the zenith angle of the light source vector in a photometric sampling framework, developing a geometric approach to estimate the surface normal vectors. Experiments show that increasing the number of samples along the zenith variation benefits the estimation of the surface normals.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horn, B.K.P., Sjoberg, R.W.: Calculating the reflectance map. In: A.I. Memo, pp. 215–244. MIT (1979)Google Scholar
  2. 2.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America 4, 519–524 (1987)CrossRefGoogle Scholar
  3. 3.
    Lee, K.-C., Ho, J., Kriegman, D.: Ninepoints of light: Acquiring subspaces for face recognition under variable lighting. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 519–526 (2001)Google Scholar
  4. 4.
    Georghiades, A., Belhumeur, D., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 634–660 (2001)CrossRefGoogle Scholar
  5. 5.
    Ho, J., Yang, M., Lim, J., Lee, K., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 11–18 (2003)Google Scholar
  6. 6.
    Lee, K.-C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Analysis and Machine Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar
  7. 7.
    Ramamoorthi, R.: Analytic pca construction for theoretical analysis of lighting variability, including attached shadows, in a single image of a convex lambertian object. IEEE Trans. Pattern Analysis and Machine Intelligence 24, 1322–1333 (2002)CrossRefGoogle Scholar
  8. 8.
    Barsky, S., Petrou, M.: The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1239–1252 (2003)CrossRefGoogle Scholar
  9. 9.
    Argyriou, V., Petrou, M.: Recursive photometric stereo when multiple shadows and highlights are present. In: Proc. CVPR, pp. 1–6 (2008)Google Scholar
  10. 10.
    Hernández, C., Vogiatzis, G., Cipolla, R.: Shadows in Three-Source Photometric Stereo. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 290–303. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Nayar, S.K., Ikeuchi, K., Kanade, T.: Shape and reflectance from an image sequence generated using extended source. In: Proceedings of IEEE ICRA, vol. 1, pp. 28–35 (1989)Google Scholar
  12. 12.
    Saito, H., Omata, K., Ozawa, S.: Recovery of shape and surface reflectance of specular object from relative rotation of light source. Image and Vision Computing 21, 777–787 (2003)CrossRefGoogle Scholar
  13. 13.
    Liu, R., Han, J.: Recovering surface normal of specular object by hough transform method. IET Computer Vision 4(2), 129–137 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Miyasaki, D., Ikeuchi, K.: Photometric stereo under unknown light sources using robust svd with missing data. In: Proc. ICIP, pp. 4057–4060 (2010)Google Scholar
  15. 15.
    Candes, E.J., Li, X., Ma, Y., Wright, J.: Robust Principal Component Analysis?, ArXiv e-prints (2009)Google Scholar
  16. 16.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Frankot, R., Chellappa, R.: A method for enforcing integrability in shape from shading algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 10, 438–451 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Felipe Hernández-Rodríguez
    • 1
  • Mario Castelán
    • 1
  1. 1.Robotics and Advanced Manufacturing GroupCentro de Investigación y de Estudios Avanzados del I.P.N.Ramos ArizpeMéxico

Personalised recommendations