A Framework for Modeling and Simulation of the Artificial

  • Scott A. Douglass
  • Saurabh Mittal
Part of the Intelligent Systems Reference Library book series (ISRL, volume 44)

Abstract

Artificial systems that generate contingency-based teleological behaviors in real-time, are difficult to model. This chapter describes a modeling and simulation (M&S) framework designed specifically to reduce this difficulty. The described Knowledge-based Contingency-driven Generative Systems (KCGS) framework combines aspects of SES theory, DEVS-based general systems theory, net-centric heterogeneous simulation, knowledge engineering, cognitive modeling, and domain-specific language development using meta-modeling. The chapter outlines the theoretical and technical foundations of the KCGS framework as realized in the Cognitive Systems Specification Framework (CS2F), a subset of KCGS. Two executable models are described to illustrate how models of autonomous, goalpursuing cognitive systems can be modeled and simulated in the framework. The technical content and agent descriptions in the chapter illustrate how the M&S of the artificial depends critically on ontology, epistemology, and teleology in the KCGS framework.

Keywords

Behavior Model Autonomous Agent Declarative Knowledge Choice Point Concrete Syntax 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.: How can the human mind occur in the physical universe?, vol. 3. Oxford University Press, USA (2007)CrossRefGoogle Scholar
  2. 2.
    Anderson, J., Bothell, D., Byrne, M., Douglass, S., Lebiere, C., Qin, Y.: An integrated theory of the mind. Psychological Review 111(4), 1036 (2004)CrossRefGoogle Scholar
  3. 3.
    Anderson, J., Matessa, M.: An overview of the epic architecture for cognition and performance with application to human-computer interaction. Human-Computer Interaction 12(4), 391–438 (1997)CrossRefGoogle Scholar
  4. 4.
    Cesarini, F., Thompson, S.: Erlang programming. O’Reilly Media (2009)Google Scholar
  5. 5.
    Douglass, S., Mittal, S.: Using domain specific languages to improve scale and integration of cognitive models. In: Proceedings of the Behavior Representation in Modeling and Simulation Conference, Utah, USA (2011)Google Scholar
  6. 6.
    Douglass, S., Myers, C.: Concurrent knowledge activation calculation in large declarative memories. In: Proceedings of the 10th International Conference on Cognitive Modeling, pp. 55–60 (2010)Google Scholar
  7. 7.
    Fann, K.: Peirce’s theory of abduction. Martinus Nijhoff La Haya (1970)Google Scholar
  8. 8.
    Gonzalez, C., Lerch, J.F., Lebiere, C.: Instance-based learning in dynamic decision making. Cognitive Science 27(4), 591–635 (2003)CrossRefGoogle Scholar
  9. 9.
    Hwang, M., Zeigler, B.: Reachability graph of Finite and Deterministic DEVS networks. IEEE Transactions on Automation Science and Engineering 6(3), 468–478 (2009)CrossRefGoogle Scholar
  10. 10.
    Keene, S.: Object-oriented programming in Common Lisp: A programmers guide to CLOS. Adison-Wesley (1989)Google Scholar
  11. 11.
    Kim, T., Lee, C., Christensen, E., Zeigler, B.: System entity structuring and model base management. IEEE Transactions on Systems, Man and Cybernetics 20(5), 1013–1024 (1990)CrossRefGoogle Scholar
  12. 12.
    Klein, G., Phillips, J., Rail, E., Peluso, D.: A data-frame theory of sensemaking. In: Expertise out of context: proceedings of the Sixth International Conference on Naturalistic Decision Making, p. 113. Lawrence Erlbaum (2007)Google Scholar
  13. 13.
    Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The generic modeling environment. In: Workshop on Intelligent Signal Processing, Budapest, Hungary, vol. 17 (2001)Google Scholar
  14. 14.
    Ledeczi, A., Volgyesi, P., Karsai, G.: Metamodel composition in the Generic Modeling Environment. In: Comm. at Workshop on Adaptive Object-Models and Metamodeling Techniques, Ecoop, vol. 1 (2001)Google Scholar
  15. 15.
    Lee, H., Zeigler, B.: SES-based ontological process for high level information fusion. In: Proceedings of the 2010 Spring Simulation Multiconference, p. 129. ACM (2010)Google Scholar
  16. 16.
    Lee, H., Zeigler, B.: System entity structure ontological data fusion process integrated with C2 systems. The Journal of Defense Modeling and Simulation: Applications, Methodology, Technology 7(4), 206–225 (2010)CrossRefGoogle Scholar
  17. 17.
    McGuinness, D., Van Harmelen, F., et al.: OWL web ontology language overview. W3C recommendation 10, 2004–03 (2004)Google Scholar
  18. 18.
    Mittal, S.: DEVS Unified Process for integrated development and testing of Service Oriented Architectures. Ph.D. thesis, Iniversity of Arizona (2007)Google Scholar
  19. 19.
    Mittal, S.: Net-centric cognitive architecture using DEVS Unified Process. In: Researching and Developing Persistent and Generative Cognitive Models Workshop, Scottsdale, AZ (2010)Google Scholar
  20. 20.
    Mittal, S., Douglass, S.: From domain specific languages to DEVS components: application to cognitive m&s. In: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, pp. 256–265. Society for Computer Simulation International (2011)Google Scholar
  21. 21.
    Mittal, S., Douglass, S.: Net-centric ACT-R-based cognitive architecture with DEVS Unified Process. In: Proceedings of the 2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium, pp. 34–44. Society for Computer Simulation International (2011)Google Scholar
  22. 22.
    Mittal, S., Douglass, S.: DEVSML 2.0: The language and the stack. In: Proceedings of the Spring Simulation 2012 Multiconference, Orlando, FL (2012)Google Scholar
  23. 23.
    Mittal, S., Risco-Martin, J.: Netcentric System of Systems Engineering with DEVS Unified Process. CRC Press (2012)Google Scholar
  24. 24.
    Mittal, S., Risco-Martin, J., Zeigler, B.: DEVS-based simulation web services for net-centric T&E. In: Proceedings of the 2007 Summer Computer Simulation Conference. pp. 357–366. Society for Computer Simulation International (2007)Google Scholar
  25. 25.
    Mittal, S., Risco-Martín, J., Zeigler, B.: DEVSML: automating DEVS execution over SOA towards transparent simulators. In: Proceedings of the 2007 Spring Simulation Multiconference, vol. 2, pp. 287–295. Society for Computer Simulation International (2007)Google Scholar
  26. 26.
    Mittal, S., Risco-Martín, J., Zeigler, B.: DEVS/SOA: A cross-platform framework for net-centric modeling and simulation in DEVS Unified Process. Simulation 85(7), 419–450 (2009)CrossRefGoogle Scholar
  27. 27.
    Mittal, S., Zeigler, B., Risco-Martin, J.: Implementation of formal standard for interoperability in M&S/systems of systems integration with DEVS/SOA. International Journal of Command and Control 2 (2009)Google Scholar
  28. 28.
    Molnár, Z., Balasubramanian, D., Lédeczi, A.: An introduction to the Generic Modeling Environment. In: Proceedings of the TOOLS Europe 2007 Workshop on Model-Driven Development Tool Implementers Forum, Zurich, Switzerland (2007)Google Scholar
  29. 29.
    Newell, A.: Unified theories of cognition, vol. 187. Harvard Univ. Pr. (1994)Google Scholar
  30. 30.
    Risco-Martín, J., Moreno, A., Cruz, J., Aranda, J.: Interoperability between DEVS and non-DEVS models using DEVS/SOA. In: Proceedings of the 2009 Spring Simulation Multiconference on ZZZ, p. 147. Society for Computer Simulation International (2009)Google Scholar
  31. 31.
    Rozenblit, J., Hu, J., Kim, T., Zeigler, B.: Knowledge-based design and simulation environment (KBDSE): Foundational concepts and implementation. Journal of the Operational Research Society, 475–489 (1990)Google Scholar
  32. 32.
    Rozenblit, J., Huang, Y.: Rule-based generation of model structures in multifaceted modeling and system design. ORSA Journal on Computing 3(4), 330–344 (1991)CrossRefGoogle Scholar
  33. 33.
    Rozenblit, J., Zeigler, B.: Representing and constructing system specifications using the system entity structure concepts. In: Proceedings of the 25th Conference on Winter Simulation, pp. 604–611. ACM (1993)Google Scholar
  34. 34.
    Schvaneveldt, R., Cohen, T.: Abductive reasoning and similarity: Some computational tools. Computer-Based Diagnostics and Systematic Analysis of Knowledge, 189–211 (2010)Google Scholar
  35. 35.
    Simon, H.: The sciences of the artificial, 2nd edn. The MIT Press (1981)Google Scholar
  36. 36.
    Siskind, J., McAllester, D.: Screamer: A portable efficient implementation of nondeterministic common lisp. Ircs technical reports series (1993)Google Scholar
  37. 37.
    Steele, G.: Common LISP: the language, 2nd edn. Digital Press (1990)Google Scholar
  38. 38.
    Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4), 110–111 (1997)CrossRefGoogle Scholar
  39. 39.
    Wainer, G., Al-Zoubi, K., Dalle, O., Hill, D., Mittal, S., Risco-Martin, J., Sarjoughian, H., Touraille, L., Traore, M., Zeigler, B.: Discrete Event Modeling and Simulation: Theory and Applications. In: DEVS Standardization: Ideas, Trends and Future (2010)Google Scholar
  40. 40.
    White, S., Sleeman, D.: Constraint handling in common lisp. Department of Computing Science Technical Report AUCS/TR9805, University of Aberdeen (1998)Google Scholar
  41. 41.
    Wilson, M.: Six views of embodied cognition. Psychonomic Bulletin & Review 9(4), 625–636 (2002)CrossRefGoogle Scholar
  42. 42.
    Zeigler, B., Chi, S.: Model-based architecture concepts for autonomous systems design and simulation. In: An Introduction to Intelligent and Autonomous Control, pp. 57–78. Kluwer Academic Publishers (1993)Google Scholar
  43. 43.
    Zeigler, B., Hammonds, P.: Modeling & simulation-based data engineering: introducing pragmatics into ontologies for net-centric information exchange. Academic Press (2007)Google Scholar
  44. 44.
    Zeigler, B., Luh, C., Kim, T.: Model base management for multifacetted systems. ACM Transactions on Modeling and Computer Simulation (TOMACS) 1(3), 195–218 (1991)MATHCrossRefGoogle Scholar
  45. 45.
    Zeigler, B., Mittal, S., Hu, X.: Towards a formal standard for interoperability in m&s/system of systems integration. In: GMU-AFCEA Symposium on Critical Issues in C4I (2008)Google Scholar
  46. 46.
    Zeigler, B., Praehofer, H., Kim, T.: Theory of modeling and simulation: Integrating discrete event and continuous complex dynamic systems, 2nd edn. Academic Press (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Scott A. Douglass
    • 1
  • Saurabh Mittal
    • 2
  1. 1.Air Force Research LaboratoryWPAFBDaytonUnited Sates
  2. 2.L-3 CommunicationsWPAFBDaytonUnited Sates

Personalised recommendations