On Solving a Stochastic Programming Model for Perishable Inventory Control

  • Eligius M. T. Hendrix
  • Rene Haijema
  • Roberto Rossi
  • Karin G. J. Pauls-Worm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7335)

Abstract

This paper describes and analyses a Stochastic Programming (SP) model that is used for a specific inventory control problem for a perishable product. The decision maker is confronted with a non-stationary random demand for a fixed shelf life product and wants to make an ordering plan for a finite horizon that satisfies a service level constraint. In literature several approaches have been described to generate approximate solutions. The question dealt with here is whether exact approaches can be developed that generate solutions up to a guaranteed accuracy. Specifically, we look into the implications of a Stochastic Dynamic Programming (SDP) approach.

Keywords

Stochastic Programming Dynamic Programming Inventory control Perishable products Service level constraint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellman, R.: Dynamic Programming. Princeton University Press (1957)Google Scholar
  2. 2.
    Blake, J.T., Thompson, S., Smith, S., Anderson, D., Arellano, R., Bernard, D.: Using dynamic programming to optimize the platelet supply chain in nova scotia. In: Dlouhý, M., Prague, C.R.O. (eds.) Proceedings of the 29th Meeting of the European Working Group on Operational Research Applied to Health Services, pp. 47–65 (2003)Google Scholar
  3. 3.
    Haijema, R., van Dijk, N.M., van der Wal, J., Smit Sibinga, C.: Blood platelet production with breaks: Optimization by SDP and Simulation. International Journal of Production Economics 121, 467–473 (2009), doi:10.1016/j.ijpe.2006.11026CrossRefGoogle Scholar
  4. 4.
    Haijema, R., van der Wal, J., van Dijk, N.M.: Blood platelet production: Optimization by dynamic programming and simulation. Computers and Operations Research 34(3), 760–779 (2007), doi:10.1016/j.cor.2005.03.023MATHCrossRefGoogle Scholar
  5. 5.
    Hendrix, E.M.T., Toth, B.G.: Introduction to Nonlinear and Global Optimization. Springer, New York (2010)MATHCrossRefGoogle Scholar
  6. 6.
    Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cambridge University (1960)Google Scholar
  7. 7.
    Karaesmen, I., Scheller-Wolf, A., Deniz, B.: Planning Production and Inventories in the Extended Enterprise. In: Managing Perishable and Aging Inventories: Review and Future Research Directions. International Series in Operations Research & Management Science, vol. 151, ch. 15, pp. 393–436. Springer (2011)Google Scholar
  8. 8.
    Nahmias, S.: Perishable inventory theory: A review. Operations Research 30, 680–708 (1982)MATHCrossRefGoogle Scholar
  9. 9.
    Pauls-Worm, K.G.J., Rossi, R., Haijema, R., Hendrix, E.M.T.: Non-stationary inventory control for a perishable product. OR Spektrum (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eligius M. T. Hendrix
    • 1
    • 2
  • Rene Haijema
    • 2
    • 3
  • Roberto Rossi
    • 4
  • Karin G. J. Pauls-Worm
    • 2
  1. 1.Computer ArchitectureUniversidad de MálagaSpain
  2. 2.Operations Research and LogisticsWageningen UniversityThe Netherlands
  3. 3.TI Food and NutritionWageningenThe Netherlands
  4. 4.Business SchoolUniversity of EdinburghUK

Personalised recommendations