On the α-Reconstructibility of Workflow Nets

  • Eric Badouel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7347)


The process mining algorithm α was introduced by van der Aalst et al. for the discovery of workflow nets from event logs. This algorithm was presented in the context of structured workflow nets even though it was recognized that more wokflow nets should be reconstructible. In this paper we assess α algorithm and provide a more precise description of the class of workflow nets reconstructible by α.


Process Mining Workflows Net Synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, Rozenberg (eds.) [9], pp. 529–586Google Scholar
  2. 2.
    Badouel, E., Darondeau, P.: Petri Net Synthesis (2013) (Book in preparation)Google Scholar
  3. 3.
    Busi, N., Pinna, M.G.: Characterizing workflow nets using regions. In: SYNASC, pp. 399–406. IEEE Computer Society (2006)Google Scholar
  4. 4.
    Busi, N., Pinna, M.G.: Process discovery and petri nets. Mathematical Structures in Computer Science 19(6), 1091–1124 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press (1995)Google Scholar
  6. 6.
    Desel, J., Reisig, W.: The Synthesis Problem of Petri Nets. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS 1993. LNCS, vol. 665, pp. 120–129. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part i: Basic notions and the representation problem. Acta Inf. 27(4), 315–342 (1989)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part ii: State spaces of concurrent systems. Acta Inf. 27(4), 343–368 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  10. 10.
    Rozenberg, G., Engelfriet, J.: Elementary net systems. In: Reisig, Rozenberg (eds.) [9], pp. 12–121Google Scholar
  11. 11.
    van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  12. 12.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Which processes can be rediscovered? BETA Working Paper Series, WP 74. Eindhoven University of Technology, Eindhoven (2002)Google Scholar
  13. 13.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  14. 14.
    Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)Google Scholar
  15. 15.
    Winskel, G.: An Introduction to Event Structures. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 364–397. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eric Badouel
    • 1
  1. 1.Inria Rennes-Bretagne Atlantique, Campus Universitaire de BeaulieuRennes CedexFrance

Personalised recommendations