Snoopy – A Unifying Petri Net Tool

  • Monika Heiner
  • Mostafa Herajy
  • Fei Liu
  • Christian Rohr
  • Martin Schwarick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7347)


The tool Snoopy provides a unifying Petri net framework which has particularly many application scenarios in systems and synthetic biology. The framework consists of two levels: uncoloured and coloured. Each level comprises a family of related Petri net classes, sharing structure, but being specialized by their kinetic information. Petri nets of all net classes within one level can be converted into each other, while changing the level involves user-guided folding or automatic unfolding. Models can be hierarchically structured, allowing for the mastering of larger networks. Snoopy supports the simultaneous use of several Petri net classes; the graphical user interface adapts dynamically to the active one. Built-in animation and simulation (depending on the net class) are complemented by export to various analysis tools. Snoopy facilitates the extension by new Petri net classes thanks to its generic design.


hierarchical (coloured) qualitative/stochastic/continuous/ hybrid Petri nets modelling animation simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    CPN Tools website, (accessed: March 30, 2012)
  2. 2.
    Gecode website, (accessed: March 30, 2012)
  3. 3.
    GreatSPN website, (accessed: March 30, 2012)
  4. 4.
    MC2 website, (accessed: March 30, 2012)
  5. 5.
    OGDF - Open graph drawing framework website, (accessed: March 30, 2012)
  6. 6.
    Wxwidgets website, (accessed: March 30, 2012)
  7. 7.
    Bornstein, B.J., Keating, S.M., Jouraku, A., Hucka, M.: LibSBML: an API library for SBML. Bioinformatics 24(6) (2008)Google Scholar
  8. 8.
    Gilbert, D., Heiner, M.: Petri nets for multiscale Systems Biology. Brunel University, Uxbridge/London (2011),
  9. 9.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  10. 10.
    Heiner, M., Gilbert, D.: How Might Petri Nets Enhance Your Systems Biology Toolkit. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 17–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended Stochastic Petri Nets for Model-Based Design of Wetlab Experiments. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS (LNBI), vol. 5750, pp. 138–163. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Heiner, M., Richter, R., Schwarick, M., Rohr, C.: Snoopy-a tool to design and execute graph-based formalisms. Petri Net Newsletter 74, 8–22 (2008)Google Scholar
  14. 14.
    Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks through generalised hybrid Petri nets. Tech. Rep. 02–11, BTU Cottbus, Computer Science Institute (2011)Google Scholar
  15. 15.
    Hindmarsh, A., Brown, P., Grant, K., Lee, S., Serban, R., Shumaker, D., Woodward, C.: Sundials: Suite of nonlinear and differential/algebraic equation solvers. ACM Trans. Math. Softw. 31, 363–396 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Kafura, D., Tatar, D.: Initial experience with a computational thinking course for computer science students. In: Proc. SIGCSE 2011, pp. 251–256. ACM (2011)Google Scholar
  17. 17.
    Liu, F.: Colored Petri Nets for Systems Biology. Ph.D. thesis, BTU Cottbus, Computer Science Institute (January 2012)Google Scholar
  18. 18.
    Liu, F., Heiner, M., Rohr, C.: Manual for Colored Petri Nets in Snoopy. Tech. Rep. 02–12, BTU Cottbus, Computer Science Institute (March 2012)Google Scholar
  19. 19.
    Nagasaki, M., Saito, A., Jeong, E., Li, C., Kojima, K., Ikeda, E., Miyano, S.: Cell Illustrator 4.0: a Comp. Platform for Systems Biology. Silico Biology 10 (2010)Google Scholar
  20. 20.
    Petre, I.: Introduction to Computational and Systems Biology, Collection of Modelling Reports, Åbo Akademi, Department of IT (2011)Google Scholar
  21. 21.
    Petri Net Markup Language (PNML): Systems and software engineering – High-level Petri nets – Part 2: Transfer format, ISO/IEC 15909–2:2011 (2009)Google Scholar
  22. 22.
    Rohr, C., Marwan, W., Heiner, M.: Snoopy - a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)CrossRefGoogle Scholar
  23. 23.
    Schwarick, M., Rohr, C., Heiner, M.: MARCIE - Model checking And Reachability analysis done effiCIEntly. In: Proc. QEST 2011. pp. 91–100 (2011)Google Scholar
  24. 24.
    Wegener, J., Schwarick, M., Heiner, M.: A Plugin System for Charlie. In: Proc. CS&P 2011, pp. 531–554. Białystok University of Technology (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monika Heiner
    • 1
  • Mostafa Herajy
    • 1
  • Fei Liu
    • 1
  • Christian Rohr
    • 1
  • Martin Schwarick
    • 1
  1. 1.Computer Science InstituteBrandenburg University of Technology CottbusCottbusGermany

Personalised recommendations