Advertisement

Designing Weakly Terminating ROS Systems

  • Debjyoti Bera
  • Kees M. van Hee
  • Jan Martijn van der Werf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7347)

Abstract

The Robot Operating System (ROS) is a popular software framework to develop and execute software for robot systems. ROS supports component-based development and provides a communication layer for easy integration. It supports three interaction patterns that are essential for control systems: the publish-subscribe pattern, the remote procedure call pattern and the goal-feedback-result pattern. In this paper we apply Petri nets to develop a structured design method for ROS systems, such that the weak termination property is guaranteed. The method is based on stepwise refinement using three interaction patterns and components modeled as state machines. The method is illustrated with a case study of robot ROSE.

Keywords

Petri nets Correctness by Construction Components Patterns Weak Termination Robot Operating System Architectural Framework 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P., Beisiegel, M., van Hee, K.M., Konig, D., Stahl, C.: A SOA-based Architecture Framework. International Journal of Business Process Integration and Management 2, 91–101 (2007)CrossRefGoogle Scholar
  2. 2.
    Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based RT-System Development: OpenRTM-AIST. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 87–98. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bruyninckx, H.: Open Robot Control Software: the OROCOS project. In: IEEE Int. Conf. Robotics and Automation, pp. 2523–2528 (2001)Google Scholar
  4. 4.
    Dijkstra, E.W.: Letters to the editor: Go To Statement Considered Harmful. Commun. ACM 11, 147–148 (1968)CrossRefGoogle Scholar
  5. 5.
    Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems. In: Proceedings of the 11th International Conference on Advanced Robotics, pp. 317–323 (2003)Google Scholar
  6. 6.
    Object Management Group. OMG Unified Modeling Language (OMG UML), Superstructure V2.3. Object Management Group (2010)Google Scholar
  7. 7.
    van Hee, K.M., Sidorova, N., Voorhoeve, M.: Soundness and Separability of Workflow Nets in the Stepwise Refinement Approach. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 337–356. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    van Hee, K.M., Sidorova, N., van der Werf, J.M.: Construction of Asynchronous Communicating Systems: Weak Termination Guaranteed! In: Baudry, B., Wohlstadter, E. (eds.) SC 2010. LNCS, vol. 6144, pp. 106–121. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    van Hee, K.M., Sidorova, N., van der Werf, J.M.E.M.: Refinement of Synchronizable Places with Multi-workflow Nets - Weak Termination Preserved! In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS 2011. LNCS, vol. 6709, pp. 149–168. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  11. 11.
    van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component Model for Consumer Electronics Software. Computer 33, 78–85 (2000)CrossRefGoogle Scholar
  12. 12.
    Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: Open-Source Software Workshop of the International Conference on Robotics and Automation, ICRA (2009)Google Scholar
  13. 13.
    Robot ROSE website, http://www.robot-rose.nl/
  14. 14.
    ROS website, http://www.ros.org/

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Debjyoti Bera
    • 1
  • Kees M. van Hee
    • 1
  • Jan Martijn van der Werf
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations