Stubborn Sets for Simple Linear Time Properties

  • Andreas Lehmann
  • Niels Lohmann
  • Karsten Wolf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7347)


We call a linear time property simple if counterexamples are accepted by a Büchi automaton that has only singleton strongly connected components. This class contains interesting properties such as LTL formulas \(G(\varphi \implies F \psi)\) or ϕU ψ which have not yet received support beyond general LTL preserving approaches.

We contribute a stubborn set approach to simple properties with the following ingredients. First, we decompose the verification problem into finitely many simpler problems that can be independently executed. Second, we propose a stubborn set method for the resulting problems that does neither require cycle detection, nor stuttering invariance, nor existence of transitions that are invisible to all atomic propositions. This means that our approach is applicable in cases where traditional approaches fail. Third, we show that sufficient potential is left in existing implementations of the proposed conditions by exploiting all the available nondeterminism in these procedures. We employ a translation to integer linear programming (ILP) for supporting this claim.


Model Check Integer Linear Programming Atomic Proposition Linear Time Temporal Logic Integer Linear Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ciardo, G., et al.: The smart model checker,
  4. 4.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: Instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)CrossRefGoogle Scholar
  5. 5.
    Geldenhuys, J., Hansen, H., Valmari, A.: Exploring the Scope for Partial Order Reduction. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 39–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model checking. In: IEEE 3rd Israel Symp. on the Theory of Computing and Systems, pp. 130–140 (1995)Google Scholar
  7. 7.
    Godefroid, P., Wolper, P.: A partial approach to model checking. In: 6th IEEE Symp. on Logic in Computer Science, Amsterdam, pp. 406–415 (1991)Google Scholar
  8. 8.
    Kokkarinen, I., Peled, D., Valmari, A.: Relaxed Visibility Enhances Partial Order Reduction. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 328–339. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Kordon, F., et al.: Report on the model checking contest at Petri Nets, LNCS ToPNoC (2011), more information provided on (accepted for publication in January 2012)
  10. 10.
    Kristensen, L.M., Valmari, A.: Improved Question-Guided Stubborn Set Methods for State Properties. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 282–302. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Peled, D.: All From One, One For All: On Model–Checking Using Representitives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    Reisig, W.: Elements Of Distributed Algorithms: Modeling and Analysis with Petri Nets. Springer (September 1998)Google Scholar
  13. 13.
    Schmidt, K.: Stubborn Sets for Standard Properties. In: Donatelli, S., Kleijn, J. (eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Schmidt, K.: Stubborn sets for model checking the EF/AG fragment of CTL. Fundam. Inform. 43(1-4), 331–341 (2000)zbMATHGoogle Scholar
  15. 15.
    Stahl, C., Reisig, W., Krstic, M.: Hazard detection in a GALS wrapper: A case study. In: ACSD 2005, pp. 234–243. IEEE Computer Society (2005)Google Scholar
  16. 16.
    Valmari, A.: Error detetction by reduced reachability graph generation. In: 9th European Workshop on Application and Theory of Petri Nets, Venice, Italy, pp. 95–112 (1988)Google Scholar
  17. 17.
    Valmari, A.: A stubborn attack on state explosion. In: Formal Methods in System Design 1, pp. 297–322 (1992)Google Scholar
  18. 18.
    Valmari, A.: Stubborn set methods for process algebras. In: Workshop on Partial Order Methods in Verification, Princeton, pp. 192–210 (1996)Google Scholar
  19. 19.
    Valmari, A., Hansen, H.: Can Stubborn Sets Be Optimal? In: Lilius, J., Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 43–62. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Varpaaniemi, K.: On the stubborn set method in reduced state space generation. PhD thesis, Helsinki University of Technology (1998)Google Scholar
  21. 21.
    Wolf, K.: Generating Petri Net State Spaces. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 29–42. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Lehmann
    • 1
  • Niels Lohmann
    • 1
  • Karsten Wolf
    • 1
  1. 1.Institut für InformatikUniversität RostockGermany

Personalised recommendations