Advertisement

Deriving Real-Time Action Systems Controllers from Multiscale System Specifications

  • Brijesh Dongol
  • Ian J. Hayes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7342)

Abstract

This paper develops a method for deriving controllers for real-time systems in which the components of the system operate at different time granularities. To this end, we incorporate the theory of time bands into action systems, which allows one to structure a system into multiple abstractions of time. The framework includes a logic that facilitates reasoning about different types of sampling errors and transient properties (i.e., properties that only hold for a brief amount of time), and we develop theorems for simplifying proofs of hardware/software interaction. We formalise true concurrency and define refinement for the parallel composition of action systems. Our method of derivation builds on the verify-while-develop paradigm, where the action system code is developed side-by-side with its proof.

Keywords

Water Level Action System Parallel Composition State Predicate Time Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aichernig, B.K., Brandl, H., Krenn, W.: Qualitative Action Systems. In: Breitman, K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 206–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Back, R.-J., Petre, L., Porres, I.: Generalizing Action Systems to Hybrid Systems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Back, R.-J.R., Sere, K.: Stepwise refinement of action systems. Structured Programming 12(1), 17–30 (1991)Google Scholar
  4. 4.
    Back, R.-J.R., von Wright, J.: Trace Refinement of Action Systems. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  5. 5.
    Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction. Springer-Verlag New York, Inc., Secaucus (1998)zbMATHGoogle Scholar
  6. 6.
    Back, R.-J.R., von Wright, J.: Compositional action system refinement. Formal Asp. Comput. 15(2-3), 103–117 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burns, A., Baxter, G.: Time bands in systems structure. In: Structure for Dependability: Computer-Based Systems from an Interdisciplinary Perspective, pp. 74–88. Springer (2006)Google Scholar
  9. 9.
    Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems. Real-Time Systems 45(1), 106–142 (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley Longman Publishing Co., Inc. (1988)Google Scholar
  11. 11.
    Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of programs. Commun. ACM 18(8), 453–457 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dongol, B.: Progress-based verification and derivation of concurrent programs. PhD thesis, The University of Queensland (2009)Google Scholar
  13. 13.
    Dongol, B., Hayes, I.J.: Enforcing safety and progress properties: An approach to concurrent program derivation. In: 20th ASWEC, pp. 3–12. IEEE Computer Society (2009)Google Scholar
  14. 14.
    Dongol, B., Hayes, I.J.: Compositional Action System Derivation Using Enforced Properties. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS, vol. 6120, pp. 119–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Dongol, B., Hayes, I.J.: Reasoning about teleo-reactive programs under parallel composition. Technical Report SSE-2011-01, The University of Queensland (April 2011)Google Scholar
  16. 16.
    Dongol, B., Hayes, I.J.: Approximating idealised real-time specifications using time bands. In: AVoCS 2011. ECEASST, vol. 46, pp. 1–16. EASST (2012)Google Scholar
  17. 17.
    Dongol, B., Hayes, I.J.: Deriving real-time action systems in a sampling logic. Sci. Comput. Program. (2012); accepted October 17, 2011Google Scholar
  18. 18.
    Dongol, B., Mooij, A.J.: Streamlining progress-based derivations of concurrent programs. Formal Aspects of Computing 20(2), 141–160 (2008)CrossRefzbMATHGoogle Scholar
  19. 19.
    Feijen, W.H.J., van Gasteren, A.J.M.: On a Method of Multiprogramming. Springer (1999)Google Scholar
  20. 20.
    Gargantini, A., Morzenti, A.: Automated deductive requirements analysis of critical systems. ACM Trans. Softw. Eng. Methodol. 10, 255–307 (2001)CrossRefGoogle Scholar
  21. 21.
    Guelev, D.P., Hung, D.V.: Prefix and projection onto state in duration calculus. Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)CrossRefGoogle Scholar
  22. 22.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust Timed Automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Hayes, I.J., Burns, A., Dongol, B., Jones, C.B.: Comparing models of nondeterministic expression evaluation. Technical Report CS-TR-1273, Newcastle University (2011)Google Scholar
  24. 24.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE Computer Society, Washington, DC (1996)Google Scholar
  25. 25.
    Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Assume-Guarantee Refinement Between Different Time Scales. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 208–221. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. 26.
    Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent Systems: Specification. Springer-Verlag New York, Inc. (1992)Google Scholar
  27. 27.
    Meinicke, L.A., Hayes, I.J.: Continuous Action System Refinement. In: Yu, H.-J. (ed.) MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In: ICECCS, pp. 238–245. IEEE Computer Society (1995)Google Scholar
  29. 29.
    Moszkowski, B.C.: A complete axiomatization of interval temporal logic with infinite time. In: LICS, pp. 241–252 (2000)Google Scholar
  30. 30.
    Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer Science 290(1), 937–973 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata. Form. Methods Syst. Des. 33, 45–84 (2008)CrossRefzbMATHGoogle Scholar
  32. 32.
    Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time Systems. EATCS: Monographs in Theoretical Computer Science. Springer (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Brijesh Dongol
    • 1
    • 2
  • Ian J. Hayes
    • 1
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandAustralia
  2. 2.Department of Computer ScienceThe University of SheffieldUK

Personalised recommendations