Probabilistic Relational Hoare Logics for Computer-Aided Security Proofs

  • Gilles Barthe
  • Benjamin Grégoire
  • Santiago Zanella Béguelin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7342)

Abstract

Provable security. The goal of provable security is to verify rigorously the security of cryptographic systems. A provable security argument proceeds in three steps:

  1. 1

    Define a security goal and an adversarial model;

     
  2. 2

    Define the cryptographic system and the security assumptions upon which the security of the system hinges;

     
  3. 3

    Show by reduction that any attack against the cryptographic system can be used to build an efficient algorithm that breaks a security assumption.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 71–90. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryptographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)Google Scholar
  3. 3.
    Barthe, G., Köpf, B., Olmedo, F., Béguelin, S.Z.: Probabilistic reasoning for differential privacy. In: 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012. ACM (2012)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: 1st ACM Conference on Computer and Communications Security, CCS 1993, pp. 62–73. ACM, New York (1993)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Rogaway, P.: The Security of Triple Encryption and a Framework for Code-Based Game-Playing Proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Benton, N.: Simple relational correctness proofs for static analyses and program transformations. In: 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004, pp. 14–25. ACM, New York (2004)CrossRefGoogle Scholar
  7. 7.
    Deng, Y., Du, W.: Logical, metric, and algorithmic characterisations of probabilistic bisimulation. Technical Report CMU-CS-11-110, Carnegie Mellon University (March 2011)Google Scholar
  8. 8.
    Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: Logic, simulation and games. In: 5th International Conference on Quantitative Evaluation of Systems, QEST 2008, pp. 264–273. IEEE Computer Society (2008)Google Scholar
  9. 9.
    Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Halevi, S.: A plausible approach to computer-aided cryptographic proofs. Cryptology ePrint Archive, Report 2005/181 (2005)Google Scholar
  12. 12.
    Jonsson, B., Yi, W., Larsen, K.G.: Probabilistic extensions of process algebras. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 685–710. Elsevier, Amsterdam (2001)Google Scholar
  13. 13.
    Segala, R., Turrini, A.: Approximated computationally bounded simulation relations for probabilistic automata. In: 20th IEEE Computer Security Foundations Symposium, CSF 2007, pp. 140–156 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gilles Barthe
    • 1
  • Benjamin Grégoire
    • 2
  • Santiago Zanella Béguelin
    • 3
  1. 1.IMDEA Software InstituteFrance
  2. 2.INRIA Sophia Antipolis - MéditerranéeFrance
  3. 3.Microsoft ResearchFrance

Personalised recommendations