Climate Change Induced Glacier Retreat and Risk Management: Glacial Lake Outburst Floods (GLOFs) in the Apolobamba Mountain Range, Bolivia

  • Dirk HoffmannEmail author
  • Daniel Weggenmann
Part of the Climate Change Management book series (CCM)


Due to global warming, tropical glaciers in the Bolivian Andes have lost about half of their volume and surface area since 1975. Throughout the Apolobamba mountain range, the retreat of glaciers has resulted in the formation of small and medium-sized lakes on the glacier terminus. Many of the glacial lakes are contained only by loose moraine debris: thus they can pose a significant threat to human settlements and infrastructure downstream. Considering the fact that the Cordillera de Apolobamba holds the largest continuous glaciated area in Bolivia, which measured 220 km² in the 1980s, there is a legitimate concern regarding the dangers that might affect this mountain region. Yet there is no documentation available on glacial lakes in the Apolobamba mountain range; indeed there is little awareness of the related risks. Only recently has glacial retreat, and climate change impacts in general, been given some importance in the planning and management of the Apolobamba National Protected Area for Integrated Management, thereby opening a discussion on natural hazard threats and the development of adaptation strategies with the objective of minimising risks for human populations and local infrastructure. This paper presents documentation of glacier retreat and the forming of glacial lakes in the Cordillera of Apolobamba over the last 35 years. In addition, the risk potential of glacial lake outburst floods and the risk awareness of the local population will be analysed in relation to park management options, and ideas outlined for more detailed studies of glacial lake outburst floods in Bolivia.


Climate change Glaciers GLOF risk management Apolobamba Bolivia 



We would first like to thank the park guards and the former director of Apolobamba National Area for Integrated Natural Management and Rodrigo Tarquino for their help and assistance, and also three anonymous reviewers for valuable comments.


  1. Apaza Ticona M (2009) Reporte preliminar del desastre natural en la comunidad de Keara. 6 noviembre 2009, La Paz: field report (unpublished)Google Scholar
  2. Arnold Torrez I, Barroso Pauletti P (2008) Áreas protegidas de Bolivia, Situación y Perspectivas de gestión, TarijaGoogle Scholar
  3. Bradley R, Vuille M, Díaz H, Vergara W (2006) Threats to water supplies in the tropical andes. Science 312:1755–1756CrossRefGoogle Scholar
  4. Byers AC (2007) An assessment of contemporary glacier fluctuations in Nepal’s Khumbu Himal using repeat photography. Himal J Sci 4:21–26Google Scholar
  5. Canqui F (2008) Segundo informe de los talleres de percepciones del cambio climático, comunidades Canuhuma y Ayllu Puyo Puyo, La Paz. Technical Report (unpublished)Google Scholar
  6. Clague J Evans S (1994) Formation and failure of natural dams in the Canadian Cordillera, Bull Geol Surv Can 464:35Google Scholar
  7. Clague J, Evans S (2000) A review of catastrophic drainage of moraine-dammed lakes in British Columbia. Quatern Sci Rev 19:1763–1783CrossRefGoogle Scholar
  8. Eamer J, Lambrechts C, Prestrud P, Young O (2007) Policy and Perspective, United Nations Environment Programme. Disaster Risk Management in Mountains Series. FAO, RomeGoogle Scholar
  9. Haeberli W (1983) Frequency and characteristics of glacier floods in the Swiss Alps. Ann Glaciol 4:85–90Google Scholar
  10. Haeberli W, Zemp M (2009) Mountain glaciers: on thin ice. In: Kohler T, Maselli D (eds) Mountains and climate change: from understanding to action. Geographica Bernensia, BernGoogle Scholar
  11. Hoffmann D (2008) Consecuencias del retroceso glaciar en la Cordillera boliviana. Pirineos 16:77–84CrossRefGoogle Scholar
  12. Hoffmann D (2010a) Andean glaciers vanish, add socio-economic strains. Focal Point Canada’s Spotlight on the Americas 9:13–15Google Scholar
  13. Hoffmann D (2010b) Cambio Climático y manejo de riesgos en alta montana: Inventario de las lagunas glaciares de la Cordillera Real de Bolivia. In: Beck SG, Paniagua N, López RP, Nagashiro N (eds) Biodiversidad y Ecología en Bolivia: Simposio de los 30 anos del Instituto de Ecología, Instituto de Ecología. Universidad Mayor San Andrés, La PazGoogle Scholar
  14. Hoffmann D (2010c) El cambio climático y las áreas protegidas de Bolivia. In: Beck SG, Paniagua N, López RP, Nagashiro N (eds) Biodiversidad y Ecología en Bolivia, Symposio de los 30 anos del Instituto de Ecología. Instituto de Ecología, Universidad Mayor San Andrés, La PazGoogle Scholar
  15. Hoffmann D, Oetting I, Arnillas CA, Ulloa R (2011) Climate change and protected areas in the tropical Andes. In: Herzog SK, Martínez R, Joergensen PM, Tiessen H (eds.) Climate change and biodiversity in the tropical Andes. Inter-American Institute for Global Change Research (IAI), Scientific Committee on Problems of the Envrionment (SCOPE), ArlingtonGoogle Scholar
  16. Huggel C, Haeberli W, Kaab A, Bieri D, Richardson S (2004) An assessment procedure for glacial hazards in the Swiss Alps. Can Geotech J 41:1068–1083CrossRefGoogle Scholar
  17. Huggel C, Kaab A, Haeberli W, Teysseire P, Paul F (2002) Remote sensing based assessment of hazards from glacier lake outbursts: a case study in the Swiss Alps. Can Geotech J 39:316–330CrossRefGoogle Scholar
  18. IPCC (2007) Climate change 2007: the physical science basis, contribution of working group I to the fourth assessment report of the IPCC, technical summary Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  19. Ives JD, Shrestha RB, Mool P, International Centre for Integrated Mountain Development (2010), Formation of glacial lakes in the Hindu Kush-Himalayas and GLOF risk assessment, International Centre for Integrated Mountain Development, KathmanduGoogle Scholar
  20. Jordan E (1991) Die Gletscher der bolivianischen Anden eine photogrammetrisch-kartographische Bestandsaufnahme der Gletscher Boliviens als Grundlage für klimatische Deutungen und Potential für die wirtschaftliche Nutzung. Steiner, StuttgartGoogle Scholar
  21. Kaltenborn BP, Nellemann C, Vistnes II (2010) High mountain glaciers and climate change: Challenges to human livelihoods and adaptacionGoogle Scholar
  22. Lauer W, Rafiqpoor M (1986) Die jungpleistozäne Vergletscherung im Vorland der Apolobamba Kordillere (Bolivien). Erdkunde 40:125–147Google Scholar
  23. Layme L, Callancho RB, Sarmiento Q (2007) Conoce el Área Natural de Manejo. Integrado Nacional Apolobamba, La PazGoogle Scholar
  24. Lliboutry L, Morales Arnao B, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru, I Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254Google Scholar
  25. López Sotomayor G (2008) Responding to the collapse of mountain ecosystem health and natural resource management institutions in Peru, IHDP Update, October 2008. pp 41–45Google Scholar
  26. Martin SW (1965) Glacial lakes in the Bolivian Andes. Geogr J 131:519–526CrossRefGoogle Scholar
  27. Marty C (2009) Natural hazards and risk in mountains: the potential impacts of climate change. In: Kohler T, Maselli D (eds) Mountains and climate change: from understanding to action. Geographica Bernensia, BernGoogle Scholar
  28. Montes de Oca I (2005) Enciclopedia Geográfica de Bolivia, La PazGoogle Scholar
  29. Mool P, Bajracharya SR, Joshi SP, International Centre for Integrated Mountain Development, Mountain Environment and Natural Resources Information System (2001) Inventory of glaciers, glacial lakes, and glacial lake outburst floods: monitoring and early warning systems in the Hindu Kush-Himalayan Region, Kathmandu, Nepal. International Centre for Integrated Mountain Development, Mountain Environment and Natural Resources’ Information SystemsGoogle Scholar
  30. Neu U (2009) Climate change in mountains. In: Kohler T, Maselli D (eds) Mountains and climate change: from understanding to action. Geographica Bernensia, BernGoogle Scholar
  31. OXFAM (2009) Bolivia: climate change poverty and adaptation. La PazGoogle Scholar
  32. Painter J (2007) Deglaciation in the Andean Region. Human Development Report 2007/08Google Scholar
  33. PNUD-Bolivia (2011) Tras las huellas del cambio climático en Bolivia. Adaptación en Agua y Seguridad Alimentaria, La PazGoogle Scholar
  34. Rafiqpoor M (1994) Geomorphological mapping in the Apolobamba Cordillera, Bolivia: application of the GMK 100 legends concept in high mountains of the marginal tropics. Erdkunde 48:241–258CrossRefGoogle Scholar
  35. Ribera MO, Libermann M (2006) El uso de la Tierra y los Recursos de la Biodiversidad en las Áreas Protegidas de Bolivia, Un análisis crítico con propuestas para su conservación y manejo sostenible, La Paz: Servicio Nacional de Áreas Protegidas (SERNAP) Proyecto GEF-II Banco MundialGoogle Scholar
  36. Richardson SD, Reynolds JM (2000) An overview of glacial hazards in the Himalayas. Quatern Int 65–66:31–47CrossRefGoogle Scholar
  37. Seltzer G, Rodbell D, Abbott M (1995) Andean glacial lakes and climate variability since the last glacial maximum. Bull Institut Francais d’Etudes Andines 24:539–549Google Scholar
  38. SERNAP (2006a) Apolobamba, Plan de Manejo. Technical paper (unpublished)Google Scholar
  39. SERNAP (2006b) Estrategia de gestión de tierras, Tomo II: Área Natural de Manejo Integrado Nacional. Technical document (unpublished)Google Scholar
  40. Singh Khadka N (2011) Quakes could rupture glacial lakesGoogle Scholar
  41. Soruco A, Vincent C, Francou B, Gonzalez JF (2009) Glacier decline between 1963 and 2006 in the Cordillera Real Bolivia. Geophys Res Lett 36:L03502Google Scholar
  42. Tarquino R, Flores P (2011) Programa de Monitoreo Integral del Área Natural de Manejo Integrado Nacional Apolobamba. Propuesta de Trabajo, technical document prepared for WCS and SERNAP (unpublished)Google Scholar
  43. Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  44. Weggenmann D (2011) Gletscherseeausbrüche in der Cordillera Apolobamba (Bolivien): Analyse und Bewertung des Risikopotentials im Rahmen des Klimawandels, Diploma (unpublished), Heidelberg UniversityGoogle Scholar
  45. WGMS (2008) Global glacier changes facts and figures. World Glacier Monitoring Service, ZürichGoogle Scholar
  46. Yamada T (1998) Glacier Lake and its outburst flood in the Nepal Himalaya, Tokyo, Japan. Data Center for Glacier Research, Japanese Society of Snow and IceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Instituto Boliviano de la Montaña—BMILa PazBolivia
  2. 2.Heidelberg UniversityHeidelbergGermany

Personalised recommendations