Gathering of Robots on Anonymous Grids without Multiplicity Detection

  • Gianlorenzo D’Angelo
  • Gabriele Di Stefano
  • Ralf Klasing
  • Alfredo Navarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

The paper studies the gathering problem on grid networks. A team of robots placed at different nodes of a grid, have to meet at some node and remain there. Robots operate in Look-Compute-Move cycles; in one cycle, a robot perceives the current configuration in terms of occupied nodes (Look), decides whether to move towards one of its neighbors (Compute), and in the positive case makes the computed move instantaneously (Move). Cycles are performed asynchronously for each robot. The problem has been deeply studied for the case of ring networks. However, the known techniques used on rings cannot be directly extended to grids. Moreover, on rings, another assumption concerning the so-called multiplicity detection capability was required in order to accomplish the gathering task. That is, a robot is able to detect during its Look operation whether a node is empty, or occupied by one robot, or occupied by an undefined number of robots greater than one.

In this paper, we provide a full characterization about gatherable configurations for grids. In particular, we show that in this case, the multiplicity detection is not required. Very interestingly, sometimes the problem appears trivial, as it is for the case of grids with both odd sides, while sometimes the involved techniques require new insights with respect to the well-studied ring case. Moreover, our results reveal the importance of a structure like the grid that allows to overcome the multiplicity detection with respect to the ring case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Degener, B., Kempkes, B., Langner, T., Meyer auf der Heide, F., Pietrzyk, P., Wattenhofer, R.: A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In: Proc. of the 23rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA), pp. 139–148 (2011)Google Scholar
  2. 2.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in graphs. Algorithmica 46, 69–96 (2006)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized Gathering of Mobile Robots with Local-Multiplicity Detection. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 384–398. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C., Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384, 222–231 (2007)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683 (1995)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Chalopin, J., Das, S.: Rendezvous of Mobile Agents without Agreement on Local Orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 515–526. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) everywhere. In: Proc. of the 21st Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 22–30 (2010)Google Scholar
  12. 12.
    Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive Perpetual Ring Exploration without Chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Devismes, S., Petit, F., Tixeuil, S.: Optimal Probabilistic Ring Exploration by Semi-synchronous Oblivious Robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 195–208. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: Ring exploration by asynchronous oblivious robots. Algorithmica (to appear)Google Scholar
  15. 15.
    Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: Tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411(14-15), 1583–1598 (2010)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering of Six Robots on Anonymous Symmetric Rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 174–185. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Koren, M.: Gathering small number of mobile asynchronous robots on ring. Zeszyty Naukowe Wydzialu ETI Politechniki Gdanskiej. Technologie Informacyjne 18, 325–331 (2010)Google Scholar
  19. 19.
    Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile Robots Gathering Algorithm with Local Weak Multiplicity in Rings. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous Mobile Robot Gathering from Symmetric Configurations without Global Multiplicity Detection. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–161. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Gabriele Di Stefano
    • 2
  • Ralf Klasing
    • 3
  • Alfredo Navarra
    • 4
  1. 1.MASCOTTE project CNRS-INRIA-UNSFrance
  2. 2.Dipartimento di Ingegneria e Scienze dell’Informazione e MatematicaUniversità degli Studi dell’AquilaItaly
  3. 3.CNRS / LaBRI / Universitè Bordeaux 1France
  4. 4.Dipartimento di Matematica e InformaticaUniversità degli Studi di PerugiaItaly

Personalised recommendations