Advertisement

Early Deciding Synchronous Renaming in O( logf ) Rounds or Less

  • Dan Alistarh
  • Hagit Attiya
  • Rachid Guerraoui
  • Corentin Travers
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

Renaming is a fundamental problem in distributed computing, in which a set of n processes need to pick unique names from a namespace of limited size. In this paper, we present the first early-deciding upper bounds for synchronous renaming, in which the running time adapts to the actual number of failures f in the execution. We show that, surprisingly, renaming can be solved in \(\emph{constant}\) time if the number of failures f is limited to \(O( \sqrt{n})\), while for general f ≤ n − 1 renaming can always be solved in O( logf ) communication rounds. In the wait-free case, i.e. for f = n − 1, our upper bounds match the Ω( logn ) lower bound of Chaudhuri et al. [13].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alistarh, D., Aspnes, J., Censor-Hillel, K., Gilbert, S., Zadimoghaddam, M.: Optimal-time adaptive strong renaming, with applications to counting. In: PODC 2011: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, pp. 239–248 (2011)Google Scholar
  2. 2.
    Alistarh, D., Aspnes, J., Gilbert, S., Guerraoui, R.: The complexity of renaming. In: FOCS 2011: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 718–727 (2011)Google Scholar
  3. 3.
    Alistarh, D., Attiya, H., Guerraoui, R., Travers, C.: Early deciding synchronous renaming in O( logf ) rounds or less. Technical report, INRIA (2012), http://hal.inria.fr/hal-00687555/en/
  4. 4.
    Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Attiya, H., Djerassi-Shintel, T.: Time bounds for decision problems in the presence of timing uncertainty and failures. Journal of Parallel and Distributed Computing 61(8), 1096–1109 (2001)zbMATHCrossRefGoogle Scholar
  6. 6.
    Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SIAM Journal on Computing 31(2), 642–664 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC 2093: Proceedings of the Twelfth Annual ACM Symposium on Principles of Distributed Computing, pp. 41–51. ACM, New York (1993)CrossRefGoogle Scholar
  8. 8.
    Brodsky, A., Ellen, F., Woelfel, P.: Fully-adaptive algorithms for long-lived renaming. Distributed Computing 24(2), 119–134 (2011)zbMATHCrossRefGoogle Scholar
  9. 9.
    Burns, J.E., Peterson, G.L.: The ambiguity of choosing. In: PODC 1989: Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed Computing, pp. 145–157. ACM, New York (1989)CrossRefGoogle Scholar
  10. 10.
    Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: The upper bound. Journal of the ACM 59(1) (March 2012)Google Scholar
  11. 11.
    Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming: The lower bound. Distributed Computing 22(5-6), 287–301 (2010)zbMATHCrossRefGoogle Scholar
  12. 12.
    Chaudhuri, S.: More choices allow more faults: Set consensus problems in totally asynchronous systems. Information and Computation 105(1), 132–158 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Chaudhuri, S., Herlihy, M., Tuttle, M.R.: Wait-free implementations in message-passing systems. Theoretical Computer Science 220(1), 211–245 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agreement in the presence of faults. Journal of the ACM 33, 499–516 (1986)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dolev, D., Reischuk, R., Raymond Strong, H.: Early stopping in byzantine agreement. Journal of the ACM 37(4), 720–741 (1990)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gafni, E., Guerraoui, R., Pochon, B.: The complexity of early deciding set agreement. SIAM Journal on Computing 40, 63–78 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. Journal of the ACM 46(2), 858–923 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Moir, M., Anderson, J.H.: Fast, Long-Lived Renaming (Extended Abstract). In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 141–155. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  19. 19.
    Okun, M.: Strong order-preserving renaming in the synchronous message passing model. Theoretical Computer Science 411(40-42), 3787–3794 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27(2), 228–234 (1980)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dan Alistarh
    • 1
  • Hagit Attiya
    • 2
  • Rachid Guerraoui
    • 1
  • Corentin Travers
    • 3
  1. 1.EPFLSwitzerland
  2. 2.TechnionIsrael
  3. 3.Univ. BordeauxFrance

Personalised recommendations