Wireless Network Stability in the SINR Model

  • Eyjólfur Ingi Ásgeirsson
  • Magnús M. Halldórsson
  • Pradipta Mitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7355)

Abstract

We study the stability of wireless networks under stochastic arrival processes of packets, and design efficient, distributed algorithms that achieve stability in the SINR (Signal to Interference and Noise Ratio) interference model.

Specifically, we make the following contributions. We give a distributed algorithm that achieves \(\Omega(\frac{1}{\log^2 n})\)-efficiency on all networks (where n is the number of links in the network), for all length monotone, sub-linear power assignments. For the power control version of the problem, we give a distributed algorithm with \(\Omega(\frac{1}{\log n(\log n + \log \log \Delta)})\)-efficiency (where Δ is the length diversity of the link set).

Keywords

Time Slot Schedule Algorithm Power Control Queue Length Interference Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, M., Dinitz, M.: Maximizing capacity in arbitrary wireless networks in the SINR model: Complexity and game theory. In: INFOCOM, pp. 1332–1340 (2009)Google Scholar
  2. 2.
    Ásgeirsson, E.I., Halldórsson, M.M., Mitra, P.: A Fully Distributed Algorithm for Throughput Performance in Wireless Networks. In: CISS (2012)Google Scholar
  3. 3.
    Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer (2003)Google Scholar
  4. 4.
    Dimakis, A., Walrand, J.: Sufficient conditions for stability of longest-queue-first scheduling: second-order properties using fluid limits. Advances in Applied Probabability 38(2), 505–521 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Dubhashi, D.P., Panconesi, A.: Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press (2009)Google Scholar
  6. 6.
    Goussevskaia, O., Halldórsson, M.M., Wattenhofer, R., Welzl, E.: Capacity of Arbitrary Wireless Networks. In: INFOCOM, pp. 1872–1880 (April 2009)Google Scholar
  7. 7.
    Halldórsson, M.M.: Wireless Scheduling with Power Control. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Halldórsson, M.M., Mitra, P.: Nearly Optimal Bounds for Distributed Wireless Scheduling in the SINR Model. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 625–636. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Halldórsson, M.M., Mitra, P.: Wireless Capacity with Oblivious Power in General Metrics. In: SODA (2011)Google Scholar
  10. 10.
    Halldorsson, M.M., Mitra, P.: Wireless capacity and admission control in cognitive radio. In: INFOCOM (2012)Google Scholar
  11. 11.
    Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Joo, C., Lin, X., Shroff, N.: Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-Hop Wireless Networks. In: INFOCOM (2008)Google Scholar
  13. 13.
    Kesselheim, T.: Dynamic packet scheduling in wireless networks, http://arxiv.org/abs/1203.1226
  14. 14.
    Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model. In: SODA (2011)Google Scholar
  15. 15.
    Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–178. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Le, L.B., Modiano, E., Joo, C., Shroff, N.B.: Longest-queue-first scheduling under SINR interference model. In: MobiHoc (2010)Google Scholar
  17. 17.
    Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)Google Scholar
  18. 18.
    Modiano, E., Shah, D., Zussman, G.: Maximizing throughput in wireless networks via gossiping. In: SIGMETRICS/Performance, pp. 27–38 (2006)Google Scholar
  19. 19.
    Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based Models. In: Hotnets (November 2006)Google Scholar
  20. 20.
    Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology control meets SINR: The scheduling complexity of arbitrary topologies. In: MobiHoc, pp. 310–321 (2006)Google Scholar
  21. 21.
    Scheideler, C., Richa, A.W., Santi, P.: An O(logn) dominating set protocol for wireless ad-hoc networks under the physical interference model. In: MobiHoc, pp. 91–100 (2008)Google Scholar
  22. 22.
    Tassiulas, L., Ephremides, A.: Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Trans. Automat. Contr. 37(12), 1936–1948 (1992)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eyjólfur Ingi Ásgeirsson
    • 1
  • Magnús M. Halldórsson
    • 1
  • Pradipta Mitra
    • 1
  1. 1.ICE-TCSReykjavik UniversityReykjavikIceland

Personalised recommendations