Measurement of Gas Hydrate by Laser Raman Spectrometry

  • Changling Liu
  • Qingguo Meng
  • Yuguang Ye
Part of the Springer Geophysics book series (SPRINGERGEOPHYS)


Raman spectrometry is a powerful tool for gas hydrate researches to provide vital information regarding the structure of the hydrate, hydrate composition, and cage occupancy. This chapter begins with discussing the basic knowledge and application of laser Raman spectrometry and then, giving the techniques and methods which have been developed in our laboratory for different experiments of gas hydrate with Raman. The techniques and methods are used for measuring hydration number of methane hydrate prepared under different conditions; investigating the Raman spectra characteristics of air, nitrogen, and oxygen hydrates; and observing methane hydrate dissociation in sediments with different particle sizes. Observation of the microprocesses of hydrate formation and dissociation is also carried out based on a low-temperature high-pressure device for in situ Raman detection. The methods are also successfully used to determinate the natural gas hydrate samples collected from Shenhu area of the South China Sea and from Qilian Mountain permafrost area, respectively, providing microscopic evidences for gas hydrate existence in the sediments.


Hydration Number Methane Molecule Methane Hydrate Small Cage Large Cage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ren Bin, Li Xiaoqin, Xie Yong, et al. Application of confocal microprobe Raman spectroscopy in the analysis of interfaces. Spectrosc Spectr Anal. 2000;20(5):648–51.Google Scholar
  2. 2.
    Yao Lintao, Liu Muhua, Liu Daojin, et al. Advances in inspecting agricultural products quality using laser technology. Acta Laser Biol Sinica. 2007;16(3):370–3.Google Scholar
  3. 3.
    Qin Chaojian, Qiu Yuzhuo, Zhou Guofu, et al. Laser Raman spectroscopic analysis of Bayan Obo carbonatite dykes and its petrogenetic significance. Acta Miner Sinica. 2007;27(3):400–5.Google Scholar
  4. 4.
    Qiaosong Huang, Zhaoxian Yu, Jing Li. Microscopic Raman spectral imaging of oily core. Spectrosc Spectr Anal. 2008;28(12):2880–4.Google Scholar
  5. 5.
    Fan Hongrui, Tao Kejie, Xie Yihan, et al. Laser Raman spectroscopy of typical rare-earth fluoro-carbonate minerals in Bayan Obo REE-Fe-Nb deposit and identification of rare-earth daughter minerals hosted in fluid inclusions. Acta Pet Sinica. 2003;19(1):169–72.Google Scholar
  6. 6.
    Zhang Meizhen, Shi Weijun, Zhang Zhirong. Laser Raman microscope and its application in geology. Pet Geol Exp. 2008;30(3):301–10.Google Scholar
  7. 7.
    He Mouchun, Lv Xinbiao, Liu Yanrong. Elementary investigation on the application of laser Raman microprobe in petroleum exploration. Spectrosc Spectr Anal. 2004;24(11):1363–6.Google Scholar
  8. 8.
    Yang Qun, Wang Yilin. Raman spectra of fossil dinosaurs from different regions. Spectrosc Spectr Anal. 2007;27(12):2468–71.Google Scholar
  9. 9.
    Xiao Yilin, Zhang Zhang, Qian Xiaofan. Micro-Raman and fluorescence spectra of several agrochemicals. Spectrosc Spectr Anal. 2004;24(5):579–82.Google Scholar
  10. 10.
    Wu Xiaoqiong, Zheng Jianzhen, Liu Wenhan, et al. Quantitative determination of glucose by internal standard laser Raman spectra. Spectrosc Spectr Analy. 2007;27(7):1344–6.Google Scholar
  11. 11.
    Liu Wenhan, Yang Mo, Xiaoqiong Wu, et al. Direct determination of ethanol by laser Raman spectra with internal standard method. Chin J Anal Chem. 2007;35(3):416–8.Google Scholar
  12. 12.
    Liu Wenhan, Yang Mo, Xiaoqiong Wu, et al. Direct quantitative determination of methanol by laser Raman spectrometry with internal standard method. Chin J Anal Chem. 2007;35(10):1503–5.CrossRefGoogle Scholar
  13. 13.
    Uchida T, Takeya S, Kamata Y, et al. Spectroscopic observation and thermodynamic calculation on clathrate hydrates of mixed gas containing methane and ethane: determination of structure, composition and cage occupancy. J Phys Chem. 2002;106:12426–31.CrossRefGoogle Scholar
  14. 14.
    Sloan Jr ED. Fundamental principles and applications of natural gas hydrates. Nature. 2003;426:353–63.CrossRefGoogle Scholar
  15. 15.
    Sum AK, Burruss RC, Sloan Jr ED. Measurement of clathrate hydrates via Raman spectroscopy. J Phys Chem B. 1997;101:7371–2.CrossRefGoogle Scholar
  16. 16.
    Subramanian S, Sloan Jr ED. Molecular measurements of methane hydrate formation. Fluid Phase Equilib. 1999;813:158–60.Google Scholar
  17. 17.
    Chazallon B, Focsa C, Charlou JL, et al. A comparative Raman spectroscopic study of natural gas hydrates collected at different geological sites. Chem Geol. 2007;244:175–85.CrossRefGoogle Scholar
  18. 18.
    Uchida T, Hirano T, Ebinuma T, et al. Raman spectroscopic determination of hydration number of methane hydrates. A I Ch E J. 1999;45(12):2641–5.CrossRefGoogle Scholar
  19. 19.
    Ballard AL, Sloan ED Jr. Optimizing thermodynamic parameters to match methane and ethane structural transition in natural gas hydrate equilibria. In: Proceedings of the Third International Conference on Natural Gas Hydrates, vol. 13. New York: New York Academy of Sciences; 2000, p. 702.Google Scholar
  20. 20.
    Komai T, Kang SP, Yoon JH, et al. In situ Raman spectroscopy investigation of the dissociation of methane hydrate at temperatures just below the ice point. J Phys Chem B. 2004;108:8062–8.CrossRefGoogle Scholar
  21. 21.
    Kawamura T, Ohga K, Higuchi K. Dissociation behavior of pellet-shaped methane-ethane mixed gas hydrate samples. Energy Fuel. 2003;17(3):614–8.CrossRefGoogle Scholar
  22. 22.
    Taylor CE, Link DD, Niall E. Methane hydrate research at NETL: research to make methane production from hydrates a reality. J Pet Sci Eng. 2007;56:186–91.CrossRefGoogle Scholar
  23. 23.
    Sloan Jr ED. Clathrate hydrates of natural gases. 2nd ed. New York: Marcel Dekker; 1998. p. 9–64.Google Scholar
  24. 24.
    Kvenvolden KA. Potential effects of gas hydrate on human. Proc Natl Acad Sci. 1999;96:3420–6.CrossRefGoogle Scholar
  25. 25.
    Collett TS. Energy resource potential of natural gas hydrate. AAPG Bull. 2002;86:1971–92.Google Scholar
  26. 26.
    Liu Changling, Ye Yuguang, Meng Qingguo. Determination of hydration number of methane hydrates using micro-laser Raman spectroscopy. Spectrosc Spectr Anal. 2010;30(4):963–6.Google Scholar
  27. 27.
    Uchida T, Moriwaki M, Takeya S, et al. Two-step formation of methane–propane mixed gas hydrate in a batch-type reactor. A I CH E J. 2004;50(2):518–23.CrossRefGoogle Scholar
  28. 28.
    Ripmeester JA, Ratcliffe CI. Application of xenon-129 NMR to the study of microporous solids. J Phys Chem. 1990;94:7652–6.CrossRefGoogle Scholar
  29. 29.
    Davidson DW, Handa YP, Ratcliffe CI, et al. Crystallographic studies of clathrate hydrates. Mol Cryst Liq Cryst. 1986;141(1):141–9.CrossRefGoogle Scholar
  30. 30.
    Shoji H, Langway Jr CC. Air hydrate inclusions in fresh ice core. Nature. 1982;298(5874):548–9.CrossRefGoogle Scholar
  31. 31.
    Liu Changling, Ye Yuguang, Lu Hailong, et al. Formation and Raman spectroscopic characteristics of nitrogen, oxygen and air hydrates. Geoscience. 2008;22(3):480–4.Google Scholar
  32. 32.
    Liu C, Lu H, Ye Y. Raman spectroscopy of nitrogen clathrate hydrates. Chin J Chem Phys. 2009;22(4):353–8.CrossRefGoogle Scholar
  33. 33.
    Champagnon B, Pamczer G, Chazallon B, et al. Nitrogen and oxygen guest molecules in clathrate hydrates: different sites revealed by Raman spectroscopy. J Raman Spectrosc. 1997;28(9):711–5.CrossRefGoogle Scholar
  34. 34.
    Ikeda T, Fukazawa H, Mae S, et al. Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys Res Lett. 1999;26(1):91–4.CrossRefGoogle Scholar
  35. 35.
    Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic study on the nitrogen/oxygen ratio in natural ice clathrates in the GRIP ice core. Geophys Res Lett. 1995;22(8):969.CrossRefGoogle Scholar
  36. 36.
    Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic study on the spatial distribution of nitrogen and oxygen in natural ice clathrates and their decomposition to air bubbles. Geophys Res Lett. 1996;23(2):1712.CrossRefGoogle Scholar
  37. 37.
    Pauer F, Kipfstuhl J, Kuhs WF. Raman spectroscopic and statistical studies on natural clathrates from the Greenland Ice Core Project ice core, and neutron diffraction studies on synthetic nitrogen clathrates. J Geophys Res. 1997;102(C12):26519–26.CrossRefGoogle Scholar
  38. 38.
    Hondoh T, Anzai H, Goto A, et al. The crystallographic structure of the natural air-hydrate in Greenland Dye-3 deep ice core. J Incl Phenom Mol Recognit Chem. 1990;8(1–2):112–24.Google Scholar
  39. 39.
    Van Cleeff A, Diepen AM. Gas hydrates of nitrogen and oxygen II. Recl Trav Chim. 1965;84:1085–93.CrossRefGoogle Scholar
  40. 40.
    Meng Qingguo, Liu Changling, Ye Yuguang, Xia Ning. In-situ observation on methane hydrate decomposition process by laser Raman spectrometry. Nat Gas Ind. 2010;30(6):117–20.Google Scholar
  41. 41.
    Liu Changling, Ye Yuguang, Meng Qingguo, Lv Wanjun, Wang Feifei. In-situ observation on methane hydrate formation and decomposition microprocess by microscopic laser Raman spectrometry. Spectrosc Spectr Anal. 2011;31(5):1–5.Google Scholar
  42. 42.
    Parent JS, Bishnoi PR. Chem Eng Commun. 1996;144:51.CrossRefGoogle Scholar
  43. 43.
    Link DD, Ladner EP, Elsen HA. Fluid Phase Equilib. 2003;211:1.CrossRefGoogle Scholar
  44. 44.
    Zhang BY, Wu Q, Sun DL. J China Univ Min Technol. 2008;18(1):18–21.CrossRefGoogle Scholar
  45. 45.
    Liu Changling, Lu Hailong, Ye Yuguang, et al. Raman spectroscopic observations on the structural characteristics and dissociation behavior of methane hydrate synthesized in silica sands with various sizes. Energy Fuel. 2008;22(6):3986–8.CrossRefGoogle Scholar
  46. 46.
    Zhu Y, Zhang Y, Wen H, et al. Gas Hydrates in the Qilian Mountain Permafrost, Qinghai, Northwest China. Acta Geol Sinica. 2010;84(1):1–10.CrossRefGoogle Scholar
  47. 47.
    Liu Changling, Ye Yuguang, Meng Qingguo. Raman spectroscopic characteristics of natural gas hydrate recovered from Shenhu area in South China Sea and Qilian Mountain permafrost. Acta Chim Sinica. 2010;68(18):1881–6.Google Scholar
  48. 48.
    Tulk CA, Ripmeester JA, Klug DD. The application of Raman spectroscopy to the study of gas hydrates. NYAS. 2000;912:859–72.CrossRefGoogle Scholar
  49. 49.
    Kuhs WF, Chazallon B, Klapproth A, et al. Filling isotherms in clathrate hydrates. Rev High Press Sci Technol. 1998;7:1141–9.CrossRefGoogle Scholar
  50. 50.
    Udachin KA, Ratcliffe CI, Ripmeester JA. Structure, composition and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J Phys Chem B. 2001;105(19):4200–3.CrossRefGoogle Scholar
  51. 51.
    Schicks J, Erzinger J, Ziemann MA. Raman spectra of gas hydrates—differences and analogies to ice 1h and (gas saturated) water. Spectrochim Acta Part A. 2005;61:2399–403.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Gas Hydrate LaboratoryQingdao Institute of Marine Geology, China Geological SurveyQingdaoChina

Personalised recommendations