Cooperative Service Composition

  • Nikolay Mehandjiev
  • Freddy Lécué
  • Martin Carpenter
  • Fethi A. Rabhi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7328)

Abstract

Traditional service composition approaches are top-down(using domain knowledge to break-down the desired functionality), or bottom-up (using planning techniques). The former rely on available problem decomposition knowledge, whilst the latter rely on the availability of a known set of services, otherwise automatic composition has been considered impossible. We address this by proposing a third approach: Cooperative Service Composition (CSC),inspired by the way organisations come together in consortia to deliver services. CSC considers each service provider as proactive in service composition, and provides a semantics-based mechanism allowing innovative service compositions to emerge as result of providers’ interactions. The key challenges we resolve are how to determine if a contribution brings the composition closer to its goal, and how to limit the number of possible solutions. In this paper we describe the approach and the solutions to the two key challenges, and demonstrate their application to the composition of financial web services.

Keywords

service composition semantic services software agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, K., Munro, M., Xu, J., Gold, N., Layzell, P., Mehandjiev, N., Budgen, D., Brereton, P.: Prototype implementations of an architectural model for service-based flexible software. In: Hawaii International Conference on System Sciences, vol. 3, p. 76b (2002)Google Scholar
  2. 2.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: A research roadmap. International Journal of Cooperative Information Systems 17(2), 223–255 (2008)CrossRefGoogle Scholar
  3. 3.
    Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S Web Services Composition Using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Wielinga, B., Schreiber, G.: Configuration-design problem solving. IEEE Expert: Intelligent Systems and Their Applications 12(2), 49–56 (1997)Google Scholar
  5. 5.
    Motta, E.: Parametric Design Problem Solving - Reusable Components For Knowledge Modelling Case Studies. IOS Press (1999)Google Scholar
  6. 6.
    Lécué, F., Mehandjiev, N.: Seeking quality of web service composition in a semantic dimension. IEEE Trans. Knowl. Data Eng. 23(6), 942–959 (2011)CrossRefGoogle Scholar
  7. 7.
    Erol, K., Hendler, J., Nau, D.S.: Htn planning: complexity and expressivity. In: Proceedings of the Twelfth National Conference on Artificial intelligence, AAAI 1994, vol. 2, pp. 1123–1128. American Association for Artificial Intelligence, Menlo Park (1994)Google Scholar
  8. 8.
    ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of Web Services as Parametric Design. In: Motta, E., Shadbolt, N.R., Stutt, A., Gibbins, N. (eds.) EKAW 2004. LNCS (LNAI), vol. 3257, pp. 321–336. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    McIlraith, S.A., Son, T.C.: Adapting golog for composition of semantic web services. In: KR, pp. 482–496 (2002)Google Scholar
  10. 10.
    Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)CrossRefGoogle Scholar
  11. 11.
    Baader, F., Nutt, W.: The Description Logic Handbook: Theory, Implementation, and Applications (2003)Google Scholar
  12. 12.
    Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The OWL-S coalition, OWL-S 1.1. Technical report (2004)Google Scholar
  13. 13.
    Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: Sawsdl: Semantic annotations for WSDL and XML schema. IEEE Internet Computing 11(6), 60–67 (2007)CrossRefGoogle Scholar
  14. 14.
    Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In: IJCAI, pp. 348–353 (2007)Google Scholar
  15. 15.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web technology. In: WWW, pp. 331–339 (2003)Google Scholar
  17. 17.
    Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Abductive matchmaking using description logics. In: IJCAI, pp. 337–342 (2003)Google Scholar
  18. 18.
    Lécué, F., Delteil, A., Léger, A.: Applying abduction in semantic web service composition. In: ICWS, pp. 94–101 (2007)Google Scholar
  19. 19.
    O’Sullivan, J., Edmond, D., ter Hofstede, A.H.M.: What’s in a service? Distributed and Parallel Databases 12(2/3), 117–133 (2002)MATHCrossRefGoogle Scholar
  20. 20.
    Küsters, R.: Non-Standard Inferences in Description Logics. LNCS (LNAI), vol. 2100. Springer, Heidelberg (2001)MATHCrossRefGoogle Scholar
  21. 21.
    Cardoso, J., Sheth, A.P., Miller, J.A., Arnold, J., Kochut, K.: Quality of service for workflows and web service processes. J. Web Sem. 1(3), 281–308 (2004)CrossRefGoogle Scholar
  22. 22.
    Ben Hassine, A., Matsubara, S., Ishida, T.: A Constraint-Based Approach to Horizontal Web Service Composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 130–143. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Shehory, O., Kraus, S.: Methods for task allocation via agent coalition formation. Artif. Intell. 101(1-2), 165–200 (1998)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Muller, I., Kowalczyk, R., Braun, P.: Towards agent-based coalition formation for service composition. In: IAT 2006: Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 73–80. IEEE Computer Society, Washington, DC (2006)CrossRefGoogle Scholar
  25. 25.
    Lecue, F., Wajid, U., Mehandjiev, N.: Negotiating robustness in semantic web service composition. In: Seventh IEEE European Conference on Web Services, ECOWS 2009, pp. 75–84 (November 2009)Google Scholar
  26. 26.
    Mehandjiev, N., Lécué, F., Wajid, U.: Provider-Composer Negotiations for Semantic Robustness in Service Compositions. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 205–220. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Carpenter, M.: Cooperative team formation using distributed decomposition knowledge. PhD thesis, Manchester Business School (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nikolay Mehandjiev
    • 1
  • Freddy Lécué
    • 2
  • Martin Carpenter
    • 1
  • Fethi A. Rabhi
    • 3
  1. 1.The University of Manchester Centre for Service ResearchManchesterUK
  2. 2.IBM ResearchSmarter Cities Technology CentreDublinIreland
  3. 3.The University of New South WalesSydneyAustralia

Personalised recommendations