Towards a Chinese Common and Common Sense Knowledge Base for Sentiment Analysis

  • Erik Cambria
  • Amir Hussain
  • Tariq Durrani
  • Jiajun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7345)


To date, the majority of sentiment analysis research has focused on English language. Recent studies, however, show that non-native English speakers heavily support the growing use of Internet. Chinese, specifically, is poised to outpace English as the dominant language online in a few years’ time. So far, just a few isolated research endeavors have been undertaken to meet the demands of real-life Chinese web environments. Natural language processing research endeavor, in fact, primarily depends on the availability of resources like lexicons and corpora, which are still very limited for sentiment analysis research in Chinese language. To this end, we are developing a Chinese common and common sense knowledge base for sentiment analysis by blending the largest existing taxonomy of English common knowledge with a semantic network of English common sense knowledge, and by using machine translation techniques to effectively translate its content into Chinese.


AI NLP KR Sentiment Analysis Sentic Computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cambria, E., Grassi, M., Hussain, A., Havasi, C.: Sentic computing for social media marketing. Multimedia Tools and Applications (2011),
  2. 2.
    Wu, W., Li, H., Wang, H., Zhu, K.: Towards a probabilistic taxonomy of many concepts. Technical Report MSR-TR-2011-25, MSRA (2011)Google Scholar
  3. 3.
    Havasi, C., Speer, R., Alonso, J.: ConceptNet 3: A flexible, multilingual semantic network for common sense knowledge. In: Proceedings of RANLP, Borovets (2007)Google Scholar
  4. 4.
    Cambria, E., Benson, T., Eckl, C., Hussain, A.: Sentic PROMs: Application of sentic computing to the development of a novel unified framework for measuring health-care quality. Expert Systems with Applications (2012),
  5. 5.
    Ye, Q., Lin, B., Li, Y.: Sentiment classification for Chinese reviews: A comparison between SVM and semantic approaches. In: Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2341–2346 (2005)Google Scholar
  6. 6.
    Ye, Q., Shi, W., Li, Y.: Sentiment classification for movie reviews in Chinese by improved semantic oriented approach. In: Proceedings of HICSS (2006)Google Scholar
  7. 7.
    Zagibalov, T., Carroll, J.: Unsupervised classification of sentiment and objectivity in Chinese text. In: Proceedings of the International Joint Conference on Natural Language Processing, pp. 304–311 (2008)Google Scholar
  8. 8.
    Zagibalov, T., Carroll, J.: Automatic seed word selection for unsupervised sentiment classification of Chinese text. In: Proceedings of COLING, vol. 1, pp. 1073–1080 (2008)Google Scholar
  9. 9.
    Tan, S., Zhang, J.: An empirical study of sentiment analysis for Chinese documents. Expert Systems with Applications 34, 2622–2629 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, C., Zeng, D., Li, J., Wang, F., Zuo, W.: Sentiment analysis of Chinese documents: From sentence to document level. Journal of the American Society for Information Science and Technology 60, 2474–2487 (2009)CrossRefGoogle Scholar
  11. 11.
    Zhai, Z., Xu, H., Li, J., Jia, P.: Sentiment classification for Chinese reviews based on key substring features. In: Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering, pp. 1–8 (2009)Google Scholar
  12. 12.
    Zhu, Y., Min, J., Zhou, Y., Huang, X., Wu, L.: Semantic orientation computing based on HowNet. Journal of Chinese Information Processing 20, 14–20 (2006)Google Scholar
  13. 13.
    Xu, L., Lin, H., Yang, Z.: Text orientation identification based on semantic comprehension. Journal of Chinese Information Processing 21, 96–100 (2007)Google Scholar
  14. 14.
    Xu, J., Ding, Y., Wang, X.: Sentiment classification for Chinese news using machine learning methods. Journal of Chinese Information Processing 21, 95–100 (2007)Google Scholar
  15. 15.
    Yao, T., Lou, D.: Research on semantic orientation analysis for topics in Chinese sentences. Journal of Chinese Information Processing 21, 73–79 (2007)Google Scholar
  16. 16.
    Yang, J., Hou, M., Wang, N.: Recognizing sentiment polarity in Chinese reviews based on topic sentiment sentences. In: Proceedings of NLP-KE (2010)Google Scholar
  17. 17.
    Dong, Z., Dong, Q.: HowNet and the Computation of Meaning. World Scientific (2000)Google Scholar
  18. 18.
    Fellbaum, C.: WordNet: An Electronic Lexical Database (Language, Speech, and Communication). The MIT Press (1998)Google Scholar
  19. 19.
    Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: A collaboratively created graph database for structuring human knowledge. In: Proceedings of SIGMOD, Vancouver, 1247–1250 (2008)Google Scholar
  20. 20.
    Ponzetto, S., Strube, M.: Deriving a large-scale taxonomy from Wikipedia. In: AAAI, Vancouver, 1440–1445 (2007)Google Scholar
  21. 21.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of COLING, Nantes, pp. 539–545 (1992)Google Scholar
  22. 22.
    Lenat, D., Guha, R.: Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project. Addison-Wesley (1989)Google Scholar
  23. 23.
    Cambria, E., Hussain, A.: Sentic Computing: Techniques, Tools, and Applications. Springer, Heidelberg (2012)Google Scholar
  24. 24.
    Cambria, E., Song, Y., Wang, H., Hussain, A.: Isanette: A common and common sense knowledge base for opinion mining. In: Proceedings of ICDM, Vancouver (2011)Google Scholar
  25. 25.
    Cambria, E., Havasi, C., Hussain, A.: SenticNet 2: A semantic and affective resource for opinion mining and sentiment analysis. In: Proceedings of FLAIRS, Marco Island (2012)Google Scholar
  26. 26.
    Havasi, C., Speer, R., Pustejovsky, J., Lieberman, H.: Digital intuition: Applying common sense using dimensionality reduction. IEEE Intelligent Systems 24(4), 24–35 (2009)CrossRefGoogle Scholar
  27. 27.
    Brown, P., Della Pietra, S., Della Pietra, V., Mercer, R.: The mathematics of machine translation: Parameter estimation. Computational Linguistics 2(19), 263–311 (1993)Google Scholar
  28. 28.
    Koehn, P., Och, F., Marcu, D.: Statistical phrase-based translation. In: Proceedings of HLT/NAACL (2003)Google Scholar
  29. 29.
    Zhang, J., Zhai, F., Zong, C.: Augmenting string-to-tree translation models with fuzzy use of source-side syntax. In: Proceedings of EMNLP, pp. 204–215 (2011)Google Scholar
  30. 30.
    Galley, M., Hopkins, M., Knight, K., Marcu, D.: What’s in a translation rule. In: Proceedings of HLT/NAACL, pp. 273–280 (2004)Google Scholar
  31. 31.
    Huang, Z., Cmejrek, M., Zhou, B.: Soft syntactic constraints for hierarchical phrase-based translation using latent syntactic distributions. In: Proceedings of EMNLP, pp. 138–147 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Erik Cambria
    • 1
  • Amir Hussain
    • 2
  • Tariq Durrani
    • 3
  • Jiajun Zhang
    • 4
  1. 1.Temasek LaboratoriesNational University of SingaporeSingapore
  2. 2.Dept. of Computing Science and MathematicsUniversity of StirlingUK
  3. 3.Dept. of Electronic and Electrical EngineeringUniversity of StrathclydeUK
  4. 4.National Laboratory of Pattern RecognitionChinese Academy of SciencesChina

Personalised recommendations