Solving Manufacturing Cell Design Problems Using Constraint Programming

  • Ricardo Soto
  • Hakan Kjellerstrand
  • Juan Gutiérrez
  • Alexis López
  • Broderick Crawford
  • Eric Monfroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7345)

Abstract

A manufacturing cell design problem (MCDP) consists in creating an optimal production plant layout. The production plant is composed of cells which in turn are composed of machines that process part families of products. The goal is to minimize part flow among cells in order to reduce production costs and increase productivity. In this paper, we focus on modeling and solving the MCDP by using state-of-the-art constraint programming (CP) techniques. We implement different optimization models and we solve it by using two solving engines. Our preliminary results demonstrate the efficiency of the proposed implementations, indeed the global optima is reached in all instances and in competitive runtime.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Manufacturing Cell Design Models, http://www.inf.ucv.cl/~rsoto/MCDP (visited 11/2011)
  2. 2.
    Aljaber, N., Baek, W., Chen, C.: A tabu search approach to the cell formation problem. Computers and Industrial Engineering 32(1), 169–185 (1997)CrossRefGoogle Scholar
  3. 3.
    Boctor, F.: A linear formulation of the machine-part cell formation problem. International Journal Production Research 29(2), 343–356 (1991)CrossRefGoogle Scholar
  4. 4.
    Boulif, M., Atif, K.: A new branch-&-bound-enhanced genetic algorithm for the manufacturing cell formation problem. Computers and Operations Research 33, 2219–2245 (2006)MATHCrossRefGoogle Scholar
  5. 5.
    Bessière, C.: Constraint Propagation. In: Handbook of Constraint Programming, pp. 29–84. Elsevier (2006)Google Scholar
  6. 6.
    Durán, O., Rodriguez, N., Consalter, L.A.: Collaborative particle swarm optimization with a data mining technique for manufacturing cell design. Expert Syst. Appl. 37(2), 1563–1567 (2010)CrossRefGoogle Scholar
  7. 7.
    Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Proceedings of the 14th ECAI, pp. 599–603. IOS Press (2000)Google Scholar
  8. 8.
    James, T., Brown, E., Keeling, K.: A hybrid grouping genetic algorithm for the cell formation problem. Computers and Operations Research 34(7), 2059–2079 (2007)MATHCrossRefGoogle Scholar
  9. 9.
    Kusiak, A., Chow, W.S.: Efficient solving of the group technology problem. Journal of Manufacturing Systems 6, 117–124 (1987)CrossRefGoogle Scholar
  10. 10.
    Lozano, S., Díaz, A., Eguía, I., Onieva, L.: A one-step tabu search algorithm for manufacturing cell design. Journal of the Operational Research Society 50(5) (1999)Google Scholar
  11. 11.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: Towards a Standard CP Modelling Language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Olivia-Lopez, E., Purcheck, G.F.K.: Load balancing for group technology planning and control. International Journal of MTDR 19, 259–268 (1979)Google Scholar
  13. 13.
    Puget, J.F.: A C++ implementation of CLP. In: SCIS, Singapore (1994)Google Scholar
  14. 14.
    Purcheck, G.F.K.: A linear - programming method for the combinatorial grouping of an incomplete set. Journal of cybernetics 5, 51–58 (1975)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Régin, J.-C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Proceedings of the 12th AAAI, pp. 362–367 (1994)Google Scholar
  16. 16.
    Schulte, C., Tack, G.: Views and Iterators for Generic Constraint Implementations. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 817–821. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Selim, H., Askin, R., Vakharia, A.: Cell formation in group technology: review, evaluation and directions for future research. Computers and Industrial Engineering 34(1), 3–20 (1998)CrossRefGoogle Scholar
  18. 18.
    Venugopal, V., Narendran, T.T.: A genetic algorithm approach to the machine-component grouping problem with multiple objectives. Computers and Industrial Engineering 22(4), 469–480 (1992)CrossRefGoogle Scholar
  19. 19.
    Wu, T., Chang, C., Chung, S.: A simulated annealing algorithm for manufacturing cell formation problems. Expert Syst. Appl. 34(3), 1609–1617 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ricardo Soto
    • 1
  • Hakan Kjellerstrand
    • 2
  • Juan Gutiérrez
    • 1
  • Alexis López
    • 1
  • Broderick Crawford
    • 1
  • Eric Monfroy
    • 3
  1. 1.Pontificia Universidad Católica de ValparaísoChile
  2. 2.Sweden
  3. 3.CNRS, LINAUniversité de NantesFrance

Personalised recommendations