Automatic Detailed Localization of Facial Features

  • Qing He
  • Ye Duan
  • Danyang Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7345)


We propose a complete framework for automatic detailed facial feature localization. Feature points and contours of the eyes, the nose, the mouth and the chin are of interest. Face detection is performed followed by the region detection that locates a rough bounding box of each facial component, and detailed features are then extracted within each bounding box. Since the feature points lie on the shape contours, we start from shape contour extraction, and then detect the feature points from the extracted contours. Experimental results show the robustness and accuracy of our methods. The main application of our work is automatic diagnosis based on facial features.


facial feature localization eyelid nose boundary lip contour generalized Hough transform 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dalal, A.B., Phadk, S.R.: Morphometric analysis of face in dysmorphology. Computer Methods and Programs in Biomedicine 85(2), 165–172 (2007)CrossRefGoogle Scholar
  2. 2.
    Loos, H.S., Wieczorek, D., Würtz, R.P., Malsburg, C., Horsthemke, B.: Computer-based recognition of dysmorphic faces. Eur. J. Hum. Genet. 11(8), 555–560 (2003)CrossRefGoogle Scholar
  3. 3.
    Boehringer, S., Vollmar, T., Tasse, C., Wurtz, R.P., Gillessen-Kaesbach, G., Horsthemke, B., Wieczorek, D.: Syndrome identification based on 2D analysis software. Eur. J. Hum. Genet. 14(10), 1082–1089 (2006)CrossRefGoogle Scholar
  4. 4.
    Feris, R.S., Gemmell, J., Toyama, K., Krüger, V.: Hierarchical Wavelet Networks for Facial Feature Localization. In: ICCV 2001 Workshop (2001)Google Scholar
  5. 5.
    Gourier, N., Hall, D., Crowley, J.L.: Facial features detection robust to pose, illumination and identity. In: International Conference on Systems Man and Cybernetics, pp. 617–622 (2004)Google Scholar
  6. 6.
    Cristinacce, D., Cootes, T., Scott, I.: A Multi-Stage Approach to Facial Feature Detection. In: BMVC 2004, pp. 231–240 (2004)Google Scholar
  7. 7.
    Asteriadis, S., Nikolaidis, N., Pitas, I.: Facial feature detection using distance vector fields. Pattern Recognition 42, 1388–1398 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kozakaya, T., Shibata, T., Yuasa, M., Yamaguchi, O.: Facial feature localization using weighted vector concentration approach. Image and Vision Computing 28, 772–780 (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, S., Laua, W.H., Leung, S.H.: Automatic lip contour extraction from color images. Pattern Recognition 37, 2375–2387 (2004)zbMATHGoogle Scholar
  10. 10.
    Wang, S.L., Leung, S.H., Lau, W.H.: Lip segmentation by fuzzy clustering incorporating with shape function. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 1, pp. 1077–1080 (2002)Google Scholar
  11. 11.
    Eveno, N., Caplier, A., Coulon, P.Y.: Accurate and quasi-automatic lip tracking. IEEE Transactions on Circuits and Systems for Video Technology 14(5), 706–715 (2004)CrossRefGoogle Scholar
  12. 12.
    Yokogawa, Y., Funabiki, N., Higashino, T., Oda, M., Mori, Y.: A Proposal of Improved Lip Contour Extraction Method Using Deformable Template Matching and Its Application to Dental Treatment. Systems and Computers in Japan 38(5) (2007)Google Scholar
  13. 13.
    Vezhnevets, V., Degtiareva, A.: Robust and Accurate Eye Contour Extraction. In: Proc. Graphicon 2003, pp. 81–84 (2003)Google Scholar
  14. 14.
    Zheng, Z., Yang, J., Yang, L.: A robust method for eye features extraction on color image. Pattern Recognition Letters 26, 2252–2261 (2005)CrossRefGoogle Scholar
  15. 15.
    Ding, L., Martinez, A.: Precise detailed detection of faces and facial features. In: CVPR (2008)Google Scholar
  16. 16.
    Kampmann, M.: MAP estimation of chin and cheek contours in video sequences. EURASIP J. Appl. Signal Process. 2004(6), 913–922 (2004)CrossRefGoogle Scholar
  17. 17.
    Wang, J., Su, G.: The research of chin contour in fronto-parallel images. In: Proceedings of the International Conference on Machine Learning and Cybernetics, pp. 2814–2819 (2003)Google Scholar
  18. 18.
    Chen, Q., Cham, W., Lee, K.: Extracting eyebrow contour and chin contour for face recognition. Pattern Recognition 40(8), 2292–2300 (2007)zbMATHCrossRefGoogle Scholar
  19. 19.
    Lam, K.M., Yan, H.: An Analytic-to-Holistic Approach for Face Recognition Based on a Single Frontal View. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(7), 673–686 (1998)CrossRefGoogle Scholar
  20. 20.
    Huang, F.Z., Su, J.: Face contour detection using geometric active contours. In: Proceedings of the Fourth World Congress on Intelligent Control and Automation, pp. 2090–2093 (2002)Google Scholar
  21. 21.
    Sun, D., Wu, L.: Face boundary extraction by statistical constraint active contour model. In: Proceedings of the International Conference on Systems, Man and Cybernetics, vol. 6, pp. 14–17 (2002)Google Scholar
  22. 22.
    Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR, pp. I. 511– I. 518 (2001)Google Scholar
  23. 23.
    Tanaka, K., Sano, M., Ohara, S., Okudaira, M.: A parametric template method and its application to robust matching. In: CVPR, vol. 1, pp. 620–627 (2000)Google Scholar
  24. 24.
    Duda, R., Hart, P.: Use of the hough transform to detect lines and curves in pictures. Communication of the Association of Computer Machinery 15(1), 11–15 (1972)CrossRefGoogle Scholar
  25. 25.
    Canzlerm, U., Dziurzyk, T.: Extraction of Non Manual Features for Video based Sign Language Recognition. In: Proceedings of IAPR Workshop, pp. 318–321 (2002)Google Scholar
  26. 26.
    Wörz, S., Rohr, K.: Localization of anatomical point landmarks in 3D medical images by fitting 3D parametric intensity models. Medical Image Analysis 10, 41–58 (2006)CrossRefGoogle Scholar
  27. 27.
    Tang, C.K., Medioni, G., Lee, M.S.: Tensor Voting. In: Boyer, K., Sarkar, S. (eds.) Perceptual Organization for Artificial Vision Systems. Kluwer Academic Publishers, Boston (2000)Google Scholar
  28. 28.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing J. 16(5), 295–306 (1998)CrossRefGoogle Scholar
  29. 29.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.: The FERET Evaluation Methodology for Face Recognition Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 22, 1090–1104 (2000)CrossRefGoogle Scholar
  30. 30.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Qing He
    • 1
  • Ye Duan
    • 1
  • Danyang Zhang
    • 2
  1. 1.Department of Computer ScienceUniversity of MissouriColumbiaUSA
  2. 2.Department of Mathematics and Computer Science, York CollegeThe City University of New YorkJamaicaUSA

Personalised recommendations