Advertisement

Land-Use Dynamics at the Micro Level: Constructing and Analyzing Historical Datasets for the Portuguese Census Tracts

  • António M. Rodrigues
  • Teresa Santos
  • Raquel Faria de Deus
  • Dulce Pimentel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7334)

Abstract

Historical census micro-data – data aggregated for small-areas – is of foremost importance as a tool for understanding detail patterns in the distribution of social phenomena. However, the non-coincidence of census tracts’ geometries for different years hampers the dynamic analysis of such information. This article applies a methodology which uses auxiliary geographical data to build coherent historical datasets when asymmetric mapping occurs due to incoherent geometries. This data serves as control zones which are the source of the computation of a weighting scheme which allows the re-allocation of data for common spatial units. An application to a municipality in the Southern coast of Mainland Portugal – Portimão – helps to show the usefulness of this analysis. Form, structure and functional attributes are combined within a coherent framework. Proximity measures are used to help to identify local patterns. The final outcome highlight the potential of both the methodology used and the historical dataset produced.

Keywords

Census micro-data asymmetric mapping social dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogerson, P.: Statistical Methods for Geography. SAGE Publications (2001)Google Scholar
  2. 2.
    Freedman, D.A.: Ecological Inference and the Ecological Fallacy. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social & Behavioral Sciences, vol. 6, pp. 4027–4030. Elsevier (2001), http://www.sciencedirect.com/science/article/pii/B0080430767004101
  3. 3.
    O’Sullivan, D.: Too Much of the Wrong Kind of Data: Implications for the Practice of Micro-Scale Spatial Modeling. In: Goodchild, M.F., Janelle, D.G. (eds.) Spatially Integrated Social Science. Oxford University Press (2004)Google Scholar
  4. 4.
    Anselin, L.: The Future of Spatial Analysis in the Social Sciences. Geographic Information Sciences 5(2), 67–76 (1999)Google Scholar
  5. 5.
    Rodrigues, A., Tenedório, J.A.: The Use of Spatial Weights Matrices and the Effect of Geometry and Geographical Scale. In: European Colloquium on Quantitative and Theoretical Geography - ECTQG 2011, Athens, September 2-5 (2011)Google Scholar
  6. 6.
    Santos, M.: Espaço e Método, 4th edn. Nobel (1997)Google Scholar
  7. 7.
    Abate, F., Jewell, E.J.: The New Oxford American Dictionary. Oxford University Press, New York (2001)Google Scholar
  8. 8.
    Santos, A.: Development and Use of Geocoding: Portugal Approach. United Nations Expert Group Meeting on Contemporary Practices. In: Census Mapping and Use of Geographical Information Systems, United Nations, New York (2007)Google Scholar
  9. 9.
    Walford, N., Hayles, K.: Thirty Years of Geographical (In)consistency in the British Population Census: Steps towards the Harmonization of Small-Area Census Geography. Population, Space and Place 10 (2011)Google Scholar
  10. 10.
    Martin, D.: Last of the censuses? The future of small area population data. Transactions of the Institute of British Geographers 31(1), 6–18 (2006)CrossRefGoogle Scholar
  11. 11.
    United Nations - Department of Economic and Social Affairs Statistics Division; Handbook on Geographic Databases and Census Mapping (Draft version). In: Proceedings of the United Nations Expert Group Meeting on Measuring the Economically Active Population in Censuses, New York (2008)Google Scholar
  12. 12.
    Goodchild, M.F., Anselin, L., Deichmann, U.: A framework for the areal interpolation of socioeconomic data. Environment and Planning A 25(3), 383–397 (1993)CrossRefGoogle Scholar
  13. 13.
    Freire, S., Aubrecht, C.: Towards improved risk assessment - Mapping spatio-temporal distribution of human exposure to earthquake hazard in the Lisbon Metropolitan Area. In: Boccardo, P., et al. (eds.) Remote Sensing and Geo- Information for Environmental Emergencies. International Symposium on Geo-information for Disaster Management (Gi4DM), February 2-4. CD-ROM, Torino (2010)Google Scholar
  14. 14.
    Nomenclature of Territorial Units for Statistics. European Commission, http://epp.eurostat.ec.europa.eu/portal/page/portal/nuts_nomenclature/introduction (accessed February 29, 2012)
  15. 15.
    Instituto Nacional de Estatística, I.P; Censos 2011 – Resultados Provisórios. INE, Lisboa (2011)Google Scholar
  16. 16.
    Santos, J.A.: A regionalização Portuguesa no Contexto Europeu. Instituto Fontes Pereira de Melo, Lisboa (1982)Google Scholar
  17. 17.
    ISCSP: Regionalização e Desenvolvimento. Forum 2000 Renovar a Administração. Instituto Superior de Ciências Sociais e Políticas/UTL (1996)Google Scholar
  18. 18.
    Geirinhas, J.: Conceitos e Metodologias BGRI - Base Geográfica de Referenciação de Informação. Direcção Regional de Lisboa e Vale do Tejo/INE (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • António M. Rodrigues
    • 1
  • Teresa Santos
    • 1
  • Raquel Faria de Deus
    • 1
  • Dulce Pimentel
    • 1
  1. 1.e-GEO – Research Centre for Geography and Regional Planning, Faculdade de Ciências Sociais e HumanasUniversidade Nova de LisboaLisboaPortugal

Personalised recommendations