Enabling Probabilistic Process Monitoring in Non-automated Environments

  • Andreas Rogge-Solti
  • Mathias Weske
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 113)

Abstract

Business processes are crucial for every organisation as they represent the core value generating processes. Managing business processes is important to be efficient and to compete with a globalized market. Business process monitoring is an essential means to understand and to improve working procedures. It helps detecting deviations from planned procedures and brings transparency into the state and progress of running process instances. However, without automated execution of business processes via a workflow engine, the absence of execution information hampers monitoring. Often, the automated execution of business processes is neither feasible nor desirable. However, a few monitoring points can be used, when process participants interact with IT-systems.

In this paper, we propose a novel approach to business process monitoring using probabilistic estimations to fill information for missing monitoring points. The applicability of the approach is evaluated with a case study in a German university hospital.

Keywords

business process monitoring probabilistic analysis sparse events 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCoy, D.W.: Business Activity Monitoring: Calm Before the Storm. Gartner Research Note LE-15-9727, vol. 15 (2002)Google Scholar
  2. 2.
    Dahanayake, A., Welke, R.J., Cavalheiro, G.: Improving the Understanding of BAM Technology for Real-Time Decision Support. International Journal of Business Information Systems 7, 1–26 (2011)CrossRefGoogle Scholar
  3. 3.
    Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33, 64–95 (2008)CrossRefGoogle Scholar
  4. 4.
    Lenz, R., Reichert, M.: IT Support for Healthcare Processes Premises, Challenges, Perspectives. Data & Knowledge Engineering 61, 39–58 (2007)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P.: Verification of Workflow Nets. In: Application and Theory of Petri Nets 1997, pp. 407–426 (1997)Google Scholar
  6. 6.
    zur Muehlen, M., Recker, J.: How Much Language Is Enough? Theoretical and Practical Use of the Business Process Modeling Notation. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 465–479. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow Resource Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer-Verlag New York Inc. (2007)Google Scholar
  9. 9.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time Prediction Based on Process Mining. Information Systems 36, 450–475 (2011)CrossRefGoogle Scholar
  10. 10.
    Hollingsworth, D., et al.: Workflow Management Coalition: The Workflow Reference Model. Workflow Management Coalition (1993)Google Scholar
  11. 11.
    Liu, X., Chen, J., Yang, Y.: A Probabilistic Strategy for Setting Temporal Constraints in Scientific Workflows. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 180–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times: comparison of log-normal and normal models. Anesthesiology 92, 1160–1167 (2000)CrossRefGoogle Scholar
  13. 13.
    Wu, J., Mehta, N., Zhang, J.: A Flexible Lognormal Sum Approximation Method. In: GLOBECOM 2005, pp. 3413–3417 (2005)Google Scholar
  14. 14.
    Wright, I.H., Kooperberg, C., Bonar, B.A., Bashein, G.: Statistical Modeling to Predict Elective Surgery Time – Comparison with a Computer Scheduling System and Surgeon-Provided Estimates (1996)Google Scholar
  15. 15.
    Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Grigori, D., et al.: Business Process Intelligence. Computers in Industry 53, 321–343 (2004)CrossRefGoogle Scholar
  17. 17.
    Kelley Jr., J.E., Walker, M.R.: Critical-Path Planning and Scheduling. Papers Presented at the Eastern Joint IRE-AIEE-ACM Computer Conference, December 1-3, pp. 160–173. ACM (1959)Google Scholar
  18. 18.
    Moder, J.J., Phillips, C.R.: Project Management with CPM and PERT (1964)Google Scholar
  19. 19.
    Martin, J.J.: Distribution of the Time through a Directed, Acyclic Network. Operations Research 13, 46–66 (1965)CrossRefGoogle Scholar
  20. 20.
    Neumann, K.: Recent Advances in Temporal Analysis of GERT Networks. Zeitschrift für Operations Research 23, 153–177 (1979)Google Scholar
  21. 21.
    de Vin, L.J., Ng, A.H.C., Oscarsson, J.: Simulation-based Decision Support for Manufacturing System Life Cycle Management. Journal of Advanced Manufacturing Systems 3, 115–128 (2004)CrossRefGoogle Scholar
  22. 22.
    de Vin, L.J., Ng, A.H.C., Oscarsson, J., Andler, S.F.: Information Fusion for Simulation based Decision Support in Manufacturing. Robotics and Computer-Integrated Manufacturing 22, 429–436 (2006)CrossRefGoogle Scholar
  23. 23.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  24. 24.
    Weijters, A., van der Aalst, W.M.P.: Process Mining: Discovering Workflow Models from Event-Based Data. In: BNAIC 2001, Citeseer, pp. 283–290 (2001)Google Scholar
  25. 25.
    van der Aalst, W.M.P.: Business Alignment: Using Process Mining as a Tool for Delta Analysis and Conformance Testing. Requirements Engineering Journal 10, 198–211 (2005)CrossRefGoogle Scholar
  26. 26.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction: When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    González, O.: Monitoring and Analysis of Workflow Applications: A Domain-specific Language Approach Ph.D. thesis, Universidad de los Andes (2010)Google Scholar
  28. 28.
    Pedrinaci, C., et al.: SENTINEL: A Semantic Business Process Monitoring Tool. In: Proceedings of the First International Workshop on Ontology-Supported Business Intelligence, pp. 1–12. ACM (2008)Google Scholar
  29. 29.
    Pedrinaci, C., Markovic, I., Hasibether, F.: Strategy-Driven Business Process Analysis. In: Business Information, pp. 1–12 (2009)Google Scholar
  30. 30.
    Alves de Medeiros, A.K., Pedrinaci, C., van der Aalst, W.M.P., Domingue, J., Song, M., Rozinat, A., Norton, B., Cabral, L.: An Outlook on Semantic Business Process Mining and Monitoring. In: Meersman, R., Tari, Z. (eds.) OTM 2007 Ws, Part II. LNCS, vol. 4806, pp. 1244–1255. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    DeFee, J.M., Harmon, P.: Business Activity Monitoring and Simulation. BP Trends Newsletter, White Paper and Technical Briefs, pp. 1–24 (2004)Google Scholar
  32. 32.
    Kang, B., Kim, D., Kang, S.: Periodic Performance Prediction for Real-time Business Process Monitoring. Industrial Management & Data (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Andreas Rogge-Solti
    • 1
  • Mathias Weske
    • 1
  1. 1.Business Process Technology Group, Hasso Plattner InstituteUniversity of PotsdamGermany

Personalised recommendations