An Overview of Call Admission Control in Mobile Cellular Networks

Part of the Studies in Computational Intelligence book series (SCI, volume 437)

Abstract

This chapter provides a thorough overview on call admission control techniques commonly employed in mobile cellular networks. It begins with an introduction to cellular technology, and gradually explores various methods and techniques for call admission control undertaken by different research groups. Strategies of call admission control under diversity of network environments have been introduced with special reference to priority of calls, predictive nature of the network and implicitness of the network, call queuing strategy, and channel borrowing schemes. Application of soft computing techniques, including artificial neural nets, genetic algorithm, fuzzy relational approach and particle swarm optimization, in call admission control is illustrated.

Keywords

Code Division Multiple Access Call Admission Control Traffic Class Handoff Call Code Division Multiple Access System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Viterbi, A.: Principles of Spread Spectrum Communication. Addison–Wesley (1995)Google Scholar
  2. 2.
    TIA/EIA/IS–95, Mobile Station–Base Station Compatibility Standard for Dual–Mode Wideband Spread Spectrum Cellular System. Telecommunication Industry Association (May 1995)Google Scholar
  3. 3.
    Cooper, G.R., Nettleton, R.W.: A Spread–Spectrum Technique for High–Capacity Mobile Communications. IEEE Transactions on Vehicular Technology VT–27, 264–275 (1978)CrossRefGoogle Scholar
  4. 4.
    Rappaport, T.S.: Wireless communications. Prentice Hall (1996)Google Scholar
  5. 5.
    Gilhousen, K.S., Jacobs, I.M., Padovani, R., Viterbi, A.J., Weaver Jr., L.A., Wheatly III, C.E.: On the capacity of a cellular CDMA system. IEEE Transactions on Vehicular Technology 40, 303–312 (1991)CrossRefGoogle Scholar
  6. 6.
    Viterbi, A.J.: Wireless Digital Communication: A View Based on Three Lessons Learned. IEEE Communications Magazine 29, 33–36 (1991)CrossRefGoogle Scholar
  7. 7.
    Jung, P., Baier, P.W., Steil, A.: Advantages of CDMA and Spread Spectrum Techniques over FDMA and TDMA in Cellular Mobile Applications. IEEE Transactions on Vehicular Technology 42, 357–364 (1993)CrossRefGoogle Scholar
  8. 8.
    Corazza, G.E., De Maio, G., Vatalaro, F.: CDMA Cellular Systems Performance with Fading, Shadowing, and Imperfect Power Control. IEEE Transactions on Vehicular Technology 47, 450–459 (1998)CrossRefGoogle Scholar
  9. 9.
    Wong, D., Lim, T.J.: Soft handoffs in CDMA mobile systems. IEEE Personal Communications Magazine 4(6), 6–17 (1997)CrossRefGoogle Scholar
  10. 10.
    Prakash, R., Veeravalli, V.V.: Locally optimal soft handoff algorithms. IEEE Transactions on Vehicular Technology 52(2), 231–260 (2003)CrossRefGoogle Scholar
  11. 11.
    Lin, Y.-B., Pang, A.-C.: Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology 49(3), 792–798 (2000)CrossRefGoogle Scholar
  12. 12.
    Ramjee, R., Towsley, D., Nagarajan, R.: On optimal call admission control in cellular networks. Wireless Networks 3(1), 29–41 (1997)CrossRefGoogle Scholar
  13. 13.
    Valko, A.G., Campbell, A.T.: An efficiency limit of cellular mobile systems. Computer Communications Journal 23(5-6), 441–451 (2000)CrossRefGoogle Scholar
  14. 14.
    Talukdar, A.K., Badrinath, B., Acharya, A.: Integrated services packet networks with mobile hosts: Architecture and performance. Wireless Networks 5(2), 111–124 (1999)CrossRefGoogle Scholar
  15. 15.
    Lu, S., Bharghavan, V.: Adaptive resource management algorithms for indoor mobile computing environments. In: Proc. ACM SIGCOMM 1996, Palo Alto, USA, pp. 231–242 (August 1996)Google Scholar
  16. 16.
    Hong, D., Rappaport, S.S.: Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Transactions on Vehicular Technology 35(3), 77–92 (1999)CrossRefGoogle Scholar
  17. 17.
    Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile telecommunication systems: A comprehensive survey. IEEE Personal Communications Magazine 3(3), 10–31 (1996)CrossRefGoogle Scholar
  18. 18.
    Chang, C.-J., Huang, P.-C., Su, T.-T.: A channel borrowing scheme in a cellular radio system with guard channels and finite queues. In: Proc. IEEE ICC 1996, Dallas, USA, vol. 2, pp. 1168–1172 (June 1996)Google Scholar
  19. 19.
    Wu, X., Yeung, K.L.: Efficient channel borrowing strategy for multimedia wireless networks. In: Proc. IEEE GLOBECOM 1998, Sydney, Australia, vol. 1, pp. 126–131 (November 1998)Google Scholar
  20. 20.
    Chu, T.-P., Rappaport, S.S.: Generalized fixed channel assignment in microcellular communication systems. IEEE Transactions on Vehicular Technology 43(3), 713–721 (1994)CrossRefGoogle Scholar
  21. 21.
    Chang, C.-J., Su, T.-T., Chiang, Y.-Y.: Analysis of a cutoff priority cellular radio system with finite queueing and reneging/dropping. IEEE/ACM Transactions on Networking 2(2), 166–175 (1994)CrossRefGoogle Scholar
  22. 22.
    Li, W., Chao, X.: Modeling and performance evaluation of a cellular mobile network. IEEE/ACM Transactions on Networking 12(1), 131–145 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Li, B., Chanson, S., Lin, C.: Analysis of a hybrid cutoff priority scheme for multiple classes of traffic in multimedia wireless networks. Wireless Networks 4(4), 279–290 (1998)CrossRefGoogle Scholar
  24. 24.
    Lin, P., Lin, Y.-B.: Channel allocation for GPRS. IEEE Transactions on Vehicular Technology 50(2), 375–384 (2001)CrossRefGoogle Scholar
  25. 25.
    Fang, Y., Zhang, Y.: Call admission control schemes and performance analysis in wireless mobile networks. IEEE Transactions on Vehicular Technology 51(2), 371–382 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Moorman, J.R., Lockwood, J.W.: Wireless call admission control using threshold access sharing. In: Proc. IEEE GLOBECOM 2001, San Antonio, USA, vol. 6, pp. 3698–3703 (November 2001)Google Scholar
  27. 27.
    Levine, D., Akyildiz, I., Naghshineh, M.: A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Transactions on Networking 5(1), 1–12 (1997)CrossRefGoogle Scholar
  28. 28.
    Choi, S., Shin, K.G.: Predictive and adaptive bandwidth reservation for handoffs in QoS-sensitive cellular networks. In: Proc. ACM SIGCOMM 1998, Vancouver, Canada, vol. 27, pp. 155–166 (October 1998)Google Scholar
  29. 29.
    Epstein, B.M., Schwartz, M.: Predictive QoS-based admission control for multiclass traffic in cellular wirelessnetworks. IEEE Journal on Selected Areas in Communications 18(3), 523–534 (2000)CrossRefGoogle Scholar
  30. 30.
    Wu, S., Wong, K.Y.M., Li, B.: A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks. IEEE/ACM Transactions on Networking 10(2), 257–271 (2002)CrossRefGoogle Scholar
  31. 31.
    Peha, J.M., Sutivong, A.: Admission control algorithms for cellular systems. Wireless Networks 7(2), 117–125 (2001)MATHCrossRefGoogle Scholar
  32. 32.
    Epstein, B., Schwartz, M.: Reservation strategies for multi-media traffic in a wireless environment. In: Proc. IEEE VTC 1995, Chicago, USA, vol. 1, pp. 165–169 (July 1995)Google Scholar
  33. 33.
    Box, G.E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, 2nd edn. Holden-Day (1976)Google Scholar
  34. 34.
    Zhang, T., Berg, E., Chennikara, J., Agrawal, P., Chen, J.C., Kodama, T.: Local predictive resource reservation for handoff in multimedia wireless IP networks. IEEE Journal on Selected Areas in Communications 19(10), 1931–1941 (2001)CrossRefGoogle Scholar
  35. 35.
    Hosking, J.R.M.: Fractional differencing. Biometrika 83(1), 165–176 (1981)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer (1991)Google Scholar
  37. 37.
    Gripenberg, G., Norros, I.: On the prediction of fractional brownian motion. Journal of Applied Probability 33, 400–410 (1996)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Norros, I.: On the use of fractional brownian motion in the theory of connectionless networks. IEEE Journal on Selected Areas in Communications 13(6), 953–962 (1995)CrossRefGoogle Scholar
  39. 39.
    Leland, W.E., Taque, M., Willinger, W., Wilson, D.: On the self-similar nature of Ethernet traffic (extended version). IEEE/ACM Transactions on Networking 2(1), 1–15 (1994)CrossRefGoogle Scholar
  40. 40.
    Crovella, M.E., Bestavros, A.: Self-similarity in world wide web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking 5(6), 835–846 (1997)CrossRefGoogle Scholar
  41. 41.
    Beran, J., et al.: Long-range dependence in variable-bit-rate video traffic. IEEE Transactions on Communications 43(2), 1566–1579 (1995)CrossRefGoogle Scholar
  42. 42.
    Shu, Y., Jin, Z., Wang, J., Yang, O.W.: Prediction-based admission control using FARIMA models. In: Proc. IEEE ICC 2000, New Orleans, USA, vol. 3, pp. 1325–1329 (June 2000)Google Scholar
  43. 43.
    Shu, Y., et al.: Traffic prediction using FARIMA models. In: Proc. IEEE ICC 1999, Vancouver, Canada, vol. 2, pp. 891–895 (June 1999)Google Scholar
  44. 44.
    Oliveira, C., Kim, J.B., Suda, T.: An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE Journal on Selected Areas in Communications 16(6), 858–874 (1998)CrossRefGoogle Scholar
  45. 45.
    Aljadhai, A., Znati, T.F.: Predictive mobility support for QoS provisioning in mobile wireless networks. IEEE Journal on Selected Areas in Communications 19(10), 1915–1930 (2001)CrossRefGoogle Scholar
  46. 46.
    Acampora, A., Naghshineh, M.: An architecture and methodology for mobile-executed handoff in cellular ATM networks. IEEE Journal on Selected Areas in Communications 12(8), 1365–1375 (1994)CrossRefGoogle Scholar
  47. 47.
    Ross, S.M.: Stochastic Process, 2nd edn. American Mathematical Society (1997)Google Scholar
  48. 48.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press (1992)Google Scholar
  49. 49.
    Iraqi, Y., Boutaba, R.: When is it worth involving several cells in the call admission control process for multimedia cellular networks? In: Proc. IEEE ICC 2001, Helsinki, Finland, vol. 2, pp. 336–340 (June 2001)Google Scholar
  50. 50.
    Mitchell, K., Sohraby, K.: An analysis of the effects of mobility on bandwidth allocation strategies in multi-class cellular wireless networks. In: Proc. IEEE INFOCOM 2001, Anchorage, USA, vol. 2, pp. 1005–1011 (April 2001)Google Scholar
  51. 51.
    Puterman, M.L.: Markov decision processes: Discrete stochastic dynamic programming. John Wiley & Sons (1994)Google Scholar
  52. 52.
    Haas, Z., Halpern, J.Y., Li, L., Wicker, S.B.: A decision-theoretic approach to resource allocation in wireless multimedia networks. In: Proc. ACM 4th Workshop Discrete Alg. Mobile Comput. Commun., Boston, USA, pp. 86–95 (August 2000)Google Scholar
  53. 53.
    Tijms, H.C.: Stochastic Modeling and Analysis: A Computational Approach. John Wiley & Sons (1989)Google Scholar
  54. 54.
    Saquib, M., Yates, R.: Optimal call admission to a mobile cellular network. In: Proc. IEEE VTC 1995, Chicago, USA, vol. 1, pp. 190–194 (July 1995)Google Scholar
  55. 55.
    Chen, D., Hee, S.B., Trivedi, K.S.: Optimal call admission control policy for wireless communication networks. In: Proc. International Conference on Information, Communication and Signal Processing, ICICS 2001, Singapore (December 2001)Google Scholar
  56. 56.
    Gao, Q., Acampora, A.: Performance comparisons of admission control strategies for future wireless networks. In: Proc. IEEE WCNC 2002, Orlando, USA, vol. 1, pp. 317–321 (March 2002)Google Scholar
  57. 57.
    Kwon, T., Choi, Y., Naghshineh, M.: Optimal distributed call admission control for multimedia services in mobile cellular networks. In: Proc. Mobile Multimedia Ccommunication, MoMuC 1998, Berlin, Germany (October 1998)Google Scholar
  58. 58.
    Xiao, Y., Chen, C.L.P., Wang, Y.: An optimal distributed call admission control for adaptive multimedia in wireless/mobile networks. In: Proc. IEEE MASCOTS 2000, San Francisco, USA, pp. 477–482 (August 2000)Google Scholar
  59. 59.
    Kwon, T., Choi, Y., Naghshineh, M.: Call admission control for adaptive multimedia in wireless/mobile networks. In: Proc. ACM WOWMOM 1998, Dallas, USA, pp. 111–116 (October 1998)Google Scholar
  60. 60.
    Kwon, T., Park, I., Choi, Y., Das, S.: Bandwidth adaptation algorithms with multi-objectives for adaptive multimedia services in wireless/mobile networks. In: Proc. ACM WOWMOM 1999, Seattle, USA, pp. 51–59 (August 1999)Google Scholar
  61. 61.
    Choi, J., Kwon, T., Choi, Y., Naghshineh, M.: Call admission control for multimedia service in mobile cellular networks: A markov decision approach. In: Proc. IEEE ISCC 2000, Antibes, France, pp. 594–599 (July 2000)Google Scholar
  62. 62.
    Yoon, I.-S., Lee, B.G.: A distributed dynamic call admission control that supports mobility of wireless multimedia users. In: Proc. IEEE ICC 1999, Vancouver, Canada, pp. 1442–1446 (June 1999)Google Scholar
  63. 63.
    Kwon, T., Choi, J., Choi, Y., Das, S.: Near optimal bandwidth adaptation algorithm for adaptive multimedia services in wireless/mobile networks. In: Proc. IEEE VTC 1999, Amsterdam, Netherlands, vol. 2, pp. 874–878 (September 1999)Google Scholar
  64. 64.
    Yener, A., Rose, C.: Near optimal call admission policies for cellular networks using genetic algorithms. In: Proc. IEEE Wireless 1994, Calgary, Canada, pp. 398–410 (July 1994)Google Scholar
  65. 65.
    Xiao, Y., Chen, C.L.P., Wang, Y.: A near optimal call admission control with genetic algorithm for multimedia services in wireless/mobile networks. In: Proc. IEEE NAECON 2000, Dayton, USA, pp. 787–792 (October 2000)Google Scholar
  66. 66.
    El-Alfy, E.-S., Yao, Y.-D., Heffes, H.: A learning approach for call admission control with prioritized handoff in mobile multimedia networks. In: Proc. IEEE VTC 2001, Rhodes, Greece, vol. 2, pp. 972–976 (May 2001)Google Scholar
  67. 67.
    Li, B., Li, L., Li, B., Cao, X.-R.: On handoff performance for an integrated voice/data cellular system. Wireless Networks 9(4), 393–402 (2003)MathSciNetCrossRefGoogle Scholar
  68. 68.
    Fang, Y.: Thinning schemes for call admission control in wireless networks. IEEE Transactions on Computers 52(5), 686–688 (2003)CrossRefGoogle Scholar
  69. 69.
    Pavlidou, F.-N.: Two-dimensional traffic models for cellular mobile systems. IEEE Transactions on Communications 42(2/3/4), 1505–1511 (1994)CrossRefGoogle Scholar
  70. 70.
    Wu, H., Li, L., Li, B., Yin, L., Chlamtac, I., Li, B.: On handoff performance for an integrated voice/data cellular system. In: Proc. IEEE PIMRC 2002, Lisboa, Portugal, vol. 5, pp. 2180–2184 (September 2002)Google Scholar
  71. 71.
    Wieselthier, J.E., Ephremides, A.: Fixed- and movable-boundary channel-access schemes for integrated voice/data wireless networks. IEEE Transactions on Communications 43(1), 64–74 (1995)CrossRefGoogle Scholar
  72. 72.
    Young, M.C., Haung, Y.-R.: Bandwidth assignment paradigms for broadband integrated voice/data networks. Computer Communications Journal 21(3), 243–253 (1998)CrossRefGoogle Scholar
  73. 73.
    Chih-Lin, I., Greenstein, L.J., Gitlin, R.D.: A microcell/macrocell architecture for low and high mobility wireless users. IEEE Journal on Selected Areas in Communications 11(6), 885–891 (1993)CrossRefGoogle Scholar
  74. 74.
    Rappaport, S.S., Hu, L.-R.: Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proc. of the IEEE 82, 1383–1397 (1994)CrossRefGoogle Scholar
  75. 75.
    Hu, L.-R., Rappaport, S.S.: Personal communication systems using multiple hierarchical cellular overlays. IEEE Journal on Selected Areas in Communications 13(2), 406–415 (1995)CrossRefGoogle Scholar
  76. 76.
    Yeung, K.L., Nanda, S.: Channel management in microcell/macrocell cellular radio systems. IEEE Transactions on Vehicular Technology 45(4), 601–612 (1996)CrossRefGoogle Scholar
  77. 77.
    Chang, C., Chang, C.J., Lo, K.-R.: Analysis of a hierarchical cellular system with reneging and dropping for waiting new and handoff calls. IEEE Transactions on Vehicular Technology 48(4), 1080–1091 (1999)CrossRefGoogle Scholar
  78. 78.
    Marsan, M.A., Ginella, G., Maglione, R., Meo, M.: Performance analysis of hierarchical cellular networks with generally distributed times and dwell times. IEEE Transactions on Wireless Communications 3(1), 248–257 (2004)CrossRefGoogle Scholar
  79. 79.
    Jain, R., Knightly, E.W.: A framework for design and evaluation of admission control algorithms in multi-service mobile networks. In: Proc. IEEE INFOCOM 1999, New York, USA, vol. 3, pp. 1027–1035 (March 1999)Google Scholar
  80. 80.
    Yu, F., Leung, V.C.: Mobility-based predictive call admission control and bandwidth reservation in wireless cellular networks. In: Proc. IEEE INFOCOM 2001, Anchorage, USA, vol. 1, pp. 518–526 (April 2001)Google Scholar
  81. 81.
    Lim, S., Cao, G., Das, C.: An admission control scheme for QoS-sensitive cellular networks. In: Proc. IEEE WCNC 2002, Orlando, USA, vol. 1, pp. 296–300 (March 2002)Google Scholar
  82. 82.
    Soh, W.-S., Kim, H.S.: Qos provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine 41(1), 86–92 (2003)CrossRefGoogle Scholar
  83. 83.
    Shen, X., Mark, J.W., Ye, J.: User mobility profile prediction: An adaptive fuzzy inference approach. Wireless Networks 6(5), 363–374 (2000)MATHCrossRefGoogle Scholar
  84. 84.
    Evci, C., Fino, B.: Spectrum management, pricing, and efficiency control in broadband wireless communications. Proc. of the IEEE 89, 105–115 (2001)CrossRefGoogle Scholar
  85. 85.
    Heikkinen, T.: Congestion based pricing in a dynamic wireless network. In: Proc. IEEE VTC 2001, Rhodes, Greece, vol. 2, pp. 1073–1076 (May 2001)Google Scholar
  86. 86.
    Hou, J., Yang, J., Papavassiliou, S.: Integration of pricing with call admission control for wireless networks. In: Proc. IEEE VTC 2001, Atlantic City, USA, vol. 3, pp. 1344–1348 (October 2001)Google Scholar
  87. 87.
    Haung, Y.-R., Lin, Y.-B., Ho, J.-M.: Performance analysis for voice/data integration on a finite-buffer mobile system. IEEE Transactions on Vehicular Technology 49(2), 367–378 (2000)CrossRefGoogle Scholar
  88. 88.
    Ye, J., Shen, X., Mark, J.W.: Call Admission Control in Wideband CDMA Cellular Networks by Using Fuzzy Logic. IEEE Transactions on Mobile Computing 4(2) (March/April 2005)Google Scholar
  89. 89.
    Chen, Y.H., Chang, C.J., Shen, S.: Outage-based fuzzy call admission controller with multi-user detection for WCDMA systems. IEE Proc. Commun. 152(5) (October 2005)Google Scholar
  90. 90.
    Chung-Ju, Chang, L.-C., Kuo, Y.-S., Chen, S.S.: Neural Fuzzy Call Admission and Rate Controller for WCDMA Cellular Systems Providing Multirate Services. In: IWCMC 2006, Vancouver, British Columbia, Canada, July 3-6 (2006)Google Scholar
  91. 91.
    Huang, C.-J., Chuang, Y.-T., Yang, D.-X.: Implementation of call admission control scheme in next generation mobile communication networks using particle swarm optimization and fuzzy logic systems. Expert Systems with Applications 35(3), 1246–1251 (2008)CrossRefGoogle Scholar
  92. 92.
    Thilakawardana, S., Tafazolli, R.: Efficient Call Admission Control and SchedulingTechnique for GPRS Using Genetic Algorithms. Mobile Communications Research Group, Centre for Communications Systems Research, CCSR (2004)Google Scholar
  93. 93.
    Wang, S.-L., Hou, Y.-B., Huang, J.-H., Huang, Z.-Q.: Adaptive Call Admission Control Based on Enhanced Genetic Algorithm in Wireless/Mobile Network. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence (2006)Google Scholar
  94. 94.
    Wang, S., Cui, Y., Koodli, R., Hou, Y., Huang, Z.: Dynamic Multiple-Threshold Call Admission Control Based on Optimized Genetic Algorithm in Wireless/Mobile Networks. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E91-A(7), 1597–1608 (2008)CrossRefGoogle Scholar
  95. 95.
    Rong, B., Qian, Y., Lu, K., Hu, R.Q., Kadoch, M.: Mobile-Agent-Based Handoff in Wireless Mesh Networks: Architecture and Call Admission Control. IEEE Transactions on Vehicular Technology 58(8), 4565–4575Google Scholar
  96. 96.
    Bernard, W.: 30 Years of Adaptive Neural Networks: Perception, Madalines and Back Propagation. Proceedings of the IEEE 78(9) (September 1990)Google Scholar
  97. 97.
    Chang, C.J., Lin, S.Y., Cheng, R.G., Shiue, Y.R.: PSD-based Neural-net Connection Admission Control. In: Proceedings of IEEE Infocom (April 1997)Google Scholar
  98. 98.
    Diaz-Estrella, A., Jurado, A., Sandoval, F.: New Training Pattern Selection Method for ATM Call Admission Neural Control. Electronic Letters 330 (March 1994)Google Scholar
  99. 99.
    Dueld, N.G., Lewis, J.T., O’Connell, N., Russell, R., Toomey, F.: Entropy of ATM Traffic Streams: A Tool for Estimating QoS Parameters. IEEE Journal on Selected Areas in Communications (August 1995)Google Scholar
  100. 100.
    Elwalid, A., Mitra, D.: Effective Bandwidth of General Markovian Traffic Sources and Admission Control of High Speed Networks. In: Proceedings of IEEE Infocom (June 1994)Google Scholar
  101. 101.
    Guerin, R., Ahmadi, H., Naghshineh, M.: Equivalent Capacity and Its Application to Bandwith Allocation in High-Speed Networks. IEEE Journal on Selected Areas in Communications (September 1991)Google Scholar
  102. 102.
    Haykin, S.: Neural Networks, A Comprehensive Foundation. Macmillan Publishing Company (1994)Google Scholar
  103. 103.
    Hees, H., Lucantoni, D.: A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance. IEEE Journal on Selected Areas in Communications (September 1986)Google Scholar
  104. 104.
    Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991)Google Scholar
  105. 105.
    Hiramatsu, A.: ATM Call Admission Control Using a Neural Network Trained with Virtual Output Buffer Method. In: IEEE International Conference on Neural Networks, vol. 6 (1994)Google Scholar
  106. 106.
    Hiramatsu, A.: Training Techniques for Neural Network Applications in ATM. IEEE Communications Magazine (October 1995)Google Scholar
  107. 107.
    Li, S.Q., Hwang, C.L.: Queue Response to Input Correlation Functions: Discrete Spectral Analysis. IEEE/ACT Transactions on Networking (October 1993)Google Scholar
  108. 108.
    Masters, T.: Practical Neural Network Recipes in C++. Academic Press (1993)Google Scholar
  109. 109.
    Morris, R., Samadi, B.: Neural Network Control of Communications Systems. IEEE Transactions on Neural Networks (1994)Google Scholar
  110. 110.
    Nordstrom, E., Carlstrom, J., Gallmo, O., Asplund, L.: Neural Networks for Adaptive Traffic Control in ATM Networks. IEEE Communications Magazine (October 1995)Google Scholar
  111. 111.
    Ogier, R., Plotkin, N.T., Khan, I.: Neural Network Methods with Traffic Descriptor Compression for Call Admission Control. In: Proceedings of IEEE Infocom (March 1996)Google Scholar
  112. 112.
    Plotkin, N.T., Roche, C.: The Entropy of Cells Streams as a Traffic Descriptor in ATM Networks. IFIP Performance of Communications Systems (October 1995)Google Scholar
  113. 113.
    Sarajedini, A., Chau, P.M.: Quality of Service Prediction Using Neural Networks. In: Proceedings of MILCOM, vol. 2 (1996)Google Scholar
  114. 114.
    Tham, C.-K., Soh, W.-S.: Multi-service Connection Admission Control using Modular Neural Networks. In: Proceedings of IEEE Infocom (March 1998)Google Scholar
  115. 115.
    Youssef, S., Habib, I., Saadawi, T.: A Neurocomputing Controller for Bandwdith Allocation in ATM Networks. IEEE Journal on Selected Areas in Communications (February 1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Artificial Intelligence Laboratory Department of Electronics and Telecommunication Engineering Jadavpur UniversityCalcuttaIndia
  2. 2.Artificial Intelligence Laboratory Department of Electronics and Telecommunication EngineeringJadavpur UniversityCalcuttaIndia

Personalised recommendations