On the Distribution of Small Denominators in the Farey Series of Order N

Conference paper

Abstract

Let N be a positive integer. The Farey series of order N is the sequence of rationals h/k with h and k coprime and 1 \(\leq {h} \leq {k} \leq {N} \) arranged in increasing order between 0 and 1, see [1].

Keywords

Positive Integer Positive Real Number Combinatorial Group Pure Mathematic Small Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years, a survey, Acta Universitatis Apulensis 5 (2003), 1–38.Google Scholar
  2. 2.
    R.R. Hall, A note on the Farey series, J. London Math. Soc. 2 (1970), 139–148.Google Scholar
  3. 3.
    G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, 5th ed., Oxford, 1979.Google Scholar
  4. 4.
    D. Kruyswijk, H.G. Meijer, On small denominators and Farey sequences, Indagtiones Math. 39 (1977), 332–337.Google Scholar
  5. 5.
    C.L. Stewart, On a sum associated with the Farey series, Report ZW88, Mathematisch Centrum (1976), 1–11.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Pure MathematicsUniversity of WaterlooWaterlooCanada

Personalised recommendations