Cyclic Sieving for Generalised Non-crossing Partitions Associated with Complex Reflection Groups of Exceptional Type

Conference paper

Abstract

We prove that the generalised non-crossing partitions associated with well-generated complex reflection groups of exceptional type obey two different cyclic sieving phenomena, as conjectured by Armstrong, and by Bessis and Reiner. The computational details are provided in the manuscript “Cyclic sieving for generalised non-crossing partitions associated with complex reflection groups of exceptional type—the details” [arχiv:1001.0030].

Keywords

Parabolic Subgroup Coxeter Group Exceptional Group Coxeter Element Coxeter Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors thank an anonymous referee for a very careful reading of the original manuscript, and for numerous pertinent suggestions which have helped to considerably improve the original manuscript.

References

  1. 1.
    G. E. Andrews, The Theory of Partitions, Encyclopedia of Math. and its Applications, vol. 2, Addison–Wesley, Reading, 1976.Google Scholar
  2. 2.
    G. E. Andrews, The Friedman–Joichi–Stanton monotonicity conjecture at primes, in: Unusual Applications of Number Theory (M. Nathanson, ed.), DIMACS Ser. Discrete Math. Theor. Comp. Sci., vol. 64, Amer. Math. Soc., Providence, R.I., 2004, pp. 9–15.Google Scholar
  3. 3.
    D. Armstrong, Generalized noncrossing partitions and combinatorics of Coxeter groups, Mem. Amer. Math. Soc., vol. 202, no. 949, Amer. Math. Soc., Providence, R.I., 2009.Google Scholar
  4. 4.
    D. Armstrong, C. Stump and H. Thomas, A uniform bijection between nonnesting and noncrossing partitions, Trans. Amer. Math. Soc. (to appear).Google Scholar
  5. 5.
    C. A. Athanasiadis, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes, Bull. London Math. Soc. 36 (2004), 294–302.MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    C. A. Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, Trans. Amer. Math. Soc. 357 (2005), 179–196.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    D. Bessis, The dual braid monoid, Ann. Sci. École Norm. Sup. (4) 36 (2003), 647–683.Google Scholar
  8. 8.
    D. Bessis, Finite complex reflection groups are \(K(\pi,1)\), preprint, ar χ iv:math/0610777.Google Scholar
  9. 9.
    D. Bessis and R. Corran, Non-crossing partitions of type (e, e, r), Adv. Math. 202 (2006), 1–49.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    D. Bessis and V. Reiner, Cyclic sieving and noncrossing partitions for complex reflection groups, Ann. Comb. 15 (2011), 197–222.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    T. Brady and C. Watt, \(K(\pi,1)\)s for Artin groups of finite type, Geom. Dedicata 94 (2002), 225–250.Google Scholar
  12. 12.
    P. Edelman, Chain enumeration and noncrossing partitions, Discrete Math. 31 (1981), 171–180.MathSciNetCrossRefGoogle Scholar
  13. 13.
    S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics, Int. Math. Res. Notices 44 (2005), 2709–2757.MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Geck, G. Hiss, F. Lübeck, G. Malle and G. Pfeiffer, CHEVIEa system for computing and processing generic character tables for finite groups of Lie type, Appl. Algebra Engrg. Comm. Comput. 7 (1996), 175–210.Google Scholar
  15. 15.
    I. Gordon and S. Griffeth, Catalan numbers for complex reflection groups, Amer. J. Math. (to appear).Google Scholar
  16. 16.
    J. E. Humphreys, Reflection groups and Coxeter groups, Cambridge University Press, Cambridge, 1990.MATHCrossRefGoogle Scholar
  17. 17.
    C. Krattenthaler, The F-triangle of the generalised cluster complex, in: Topics in Discrete Mathematics, dedicated to Jarik Nešetřil on the occasion of his 60th birthday (M. Klazar, J. Kratochvil, M. Loebl, J. Matoušek, R. Thomas and P. Valtr, eds.), Springer–Verlag, Berlin, New York, 2006, pp. 93–126.Google Scholar
  18. 18.
    C. Krattenthaler, The M-triangle of generalised non-crossing partitions for the types E 7 and E 8, Séminaire Lotharingien Combin. 54 (2006), Article B54l, 34 pages.Google Scholar
  19. 19.
    C. Krattenthaler, Non-crossing partitions on an annulus, in preparation.Google Scholar
  20. 20.
    C. Krattenthaler and T. W. Müller, Decomposition numbers for finite Coxeter groups and generalised non-crossing partitions, Trans. Amer. Math. Soc. 362 (2010), 2723–2787.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    C. Krattenthaler and T. W. Müller, Cyclic sieving for generalised non-crossing partitions associated with complex reflection groups of exceptional type—the details, manuscript; ar χ iv:1001.0030.Google Scholar
  22. 22.
    G. Kreweras, Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), 333–350.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    G. I. Lehrer and J. Michel, Invariant theory and eigenspaces for unitary reflection groups, C. R. Math. Acad. Sci. Paris 336 (2003), 795–800.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    G. I. Lehrer and D. E. Taylor, Unitary reflection groups, Cambridge University Press, Cambridge, 2009.MATHGoogle Scholar
  25. 25.
    G. Malle and J. Michel, Constructing representations of Hecke algebras for complex reflection groups, LMS J. Comput. Math. 13 (2010), 426–450.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    I. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Appl. Algebra 216 (2012), 2754–2782.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    J. Michel, The GAP-part of the CHEVIE system, GAP 3-package available for download from http://people.math.jussieu.fr/jmichel/chevie/chevie.html.
  28. 28.
    P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980), 77–94.MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    V. Reiner, D. Stanton and D. White, The cyclic sieving phenomenon, J. Combin. Theory Ser. A 108 (2004), 17–50.MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    B. Rhoades, Parking structures: Fuss analogs, preprint, ar χ iv:1205.4293.Google Scholar
  31. 31.
    V. Ripoll, Orbites d’Hurwitz des factorisations primitives d’un élément de Coxeter, J. Algebra 323 (2010), 1432–1453.MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    B. E. Sagan, The cyclic sieving phenomenon: a survey, Surveys in combinatorics 2011, London Math. Soc. Lecture Note Ser., vol. 392, Cambridge Univ. Press, Cambridge, 2011, pp. 183–233.Google Scholar
  33. 33.
    G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    T. A. Springer, Regular elements of finite reflection groups, Invent. Math. 25 (1974), 159–198.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    J. R. Stembridge, Some hidden relations involving the ten symmetry classes of plane partitions, J. Combin. Theory Ser. A 68 (1994), 372–409.MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    J. R. Stembridge, Canonical bases and self-evacuating tableaux, Duke Math. J. 82 (1996). 585–606,MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    J. R. Stembridge, scoxeter, Maple package for working with root systems and finite Coxeter groups; available at http://www.math.lsa.umich.edu/\~jrs.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fakultät für MathematikUniversität WienViennaAustria
  2. 2.School of Mathematical Sciences, Queen Mary & Westfield CollegeUniversity of LondonLondonUK

Personalised recommendations