Metric Transforms

  • Michel Marie Deza
  • Elena Deza

Abstract

There are many ways to obtain new distances (metrics) from given distances (metrics). Metric transforms give new distances as a functions of given metrics (or given distances) on the same set X. A metric so obtained is called a transform metric. We give some important examples of transform metrics in Sect. 4.1.

Keywords

Cayley Graph Distance Space Line Distance Extension Distance Hilbert Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BBI01]
    Burago D., Burago Y. and Ivanov S. A Course in Metric Geometry, Graduate Studies in Math., Vol. 33, Amer. Math. Soc, Providence, 2001. MATHGoogle Scholar
  2. [Buse55]
    Busemann H. The Geometry of Geodesics, Academic Press, New York, 1955. MATHGoogle Scholar
  3. [CaTa08]
    Cameron P.J. and Tarzi S. Limits of Cubes, Topol. Appl., Vol. 155, pp. 1454–1461, 2008. MATHCrossRefMathSciNetGoogle Scholar
  4. [Cora99]
    Corazza P. Introduction to Metric-Preserving Functions, Am. Math. Mon., Vol. 104, pp. 309–323, 1999. CrossRefMathSciNetGoogle Scholar
  5. [DeLa97]
    Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer, Berlin, 1997. MATHGoogle Scholar
  6. [FoSc06]
    Foertsch T. and Schroeder V. Hyperbolicity, CAT(-1)-Spaces and the Ptolemy Inequality, arXiv:math.MG/0605418v2, 13 July 2006.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Marie Deza
    • 1
  • Elena Deza
    • 2
  1. 1.École Normale SupérieureParisFrance
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations