Distances in Graph Theory

  • Michel Marie Deza
  • Elena Deza

Abstract

A graph is a pair G=(V,E), where V is a set, called the set of vertices of the graph G, and E is a set of unordered pairs of vertices, called the edges of the graph G. A directed graph (or digraph) is a pair D=(V,E), where V is a set, called the set of vertices of the digraph D, and E is a set of ordered pairs of vertices, called arcs of the digraph D.

Keywords

Connected Graph Edit Distance Editing Operation Block Graph Common Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AAH00]
    Aichholzer O., Aurenhammer F. and Hurtado F. Edge Operations on Non-crossing Spanning Trees, in Proc. 16th European Workshop on Computational Geometry CG’2000, pp. 121–125, 2000. Google Scholar
  2. [BuHa90]
    Buckley F. and Harary F. Distance in Graphs, Addison-Wesley, Redwood City, 1990. MATHGoogle Scholar
  3. [ChLu85]
    Cheng Y.C. and Lu S.Y. Waveform Correlation by Tree Matching, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 7, pp. 299–305, 1985. CrossRefGoogle Scholar
  4. [ChFi98]
    Chepoi V. and Fichet B. A Note on Circular Decomposable Metrics, Geom. Dedic., Vol. 69, pp. 237–240, 1998. MATHCrossRefMathSciNetGoogle Scholar
  5. [CLMNWZ05]
    Coifman R.R., Lafon S., Lee A.B., Maggioni M., Nadler B., Warner F. and Zucker S.W. Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps, Proc. Natl. Acad. Sci. USA, Vol. 102, No. 21, pp. 7426–7431, 2005. CrossRefGoogle Scholar
  6. [CPQ96]
    Critchlow D.E., Pearl D.K. and Qian C. The Triples Distance for Rooted Bifurcating Phylogenetic Trees, Syst. Biol., Vol. 45, pp. 323–334, 1996. CrossRefGoogle Scholar
  7. [DeLa97]
    Deza M.M. and Laurent M. Geometry of Cuts and Metrics, Springer, Berlin, 1997. MATHGoogle Scholar
  8. [EMM85]
    Estabrook G.F., McMorris F.R. and Meacham C.A. Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Syst. Zool., Vol. 34, pp. 193–200, 1985. CrossRefGoogle Scholar
  9. [JWZ94]
    Jiang T., Wang L. and Zhang K. Alignment of Trees—An Alternative to Tree Edit, in Combinatorial Pattern Matching, Lecture Notes in Computer Science, Vol. 807, Crochemore M. and Gusfield D. (eds.), Springer, Berlin, 1994. CrossRefGoogle Scholar
  10. [MaMo95]
    Mak King-Tim and Morton A.J. Distances Between Traveling Salesman Tours, Discrete Appl. Math., Vol. 58, pp. 281–291, 1995. MATHCrossRefMathSciNetGoogle Scholar
  11. [McCa97]
    McCanna J.E. Multiply-Sure Distances in Graphs, Congr. Numer., Vol. 97, pp. 71–81, 1997. MathSciNetGoogle Scholar
  12. [Selk77]
    Selkow S.M. The Tree-to-tree Editing Problem, Inf. Process. Lett., Vol. 6-6, pp. 184–186, 1977. MATHCrossRefMathSciNetGoogle Scholar
  13. [Tai79]
    Tai K.-C. The Tree-to-Tree Correction Problem, J. Assoc. Comput. Mach., Vol. 26, pp. 422–433, 1979. MATHCrossRefMathSciNetGoogle Scholar
  14. [Zeli75]
    Zelinka B. On a Certain Distance Between Isomorphism Classes of Graphs, Čas. Pěst. Mat., Vol. 100, pp. 371–373, 1975. MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Michel Marie Deza
    • 1
  • Elena Deza
    • 2
  1. 1.École Normale SupérieureParisFrance
  2. 2.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations