Advertisement

Automating Next-Step Hints Generation Using ASTUS

  • Luc Paquette
  • Jean-François Lebeau
  • Gabriel Beaulieu
  • André Mayers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7315)

Abstract

ASTUS is an authoring framework designed to create model-tracing tutors with similar efforts to those needed to create Cognitive Tutors. Its knowledge representation system was designed to model the teacher’s point of view of the task and to be manipulated by task independent processes such as the automatic generation of sophisticated pedagogical feedback. The first type of feedback we automated is instructions provided as next step hints. Whereas next step hints are classically authored by teachers and integrated in the model of the task, our framework automatically generates them from task independent templates. In this paper, we explain, using examples taken from a floating-point number conversion tutor, how our knowledge representation approach facilitates the generation of next-step hints. We then present experiments, conducted to validate our approach, showing that generated hints can be as efficient and appreciated as teacher authored ones.

Keywords

Hint generation knowledge representation model-tracing tutors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wenger, E.: Artificial Intelligence in Tutoring Systems: Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann Publishers Inc. (1987)Google Scholar
  2. 2.
    Paquette, L., Lebeau, J.-F., Mayers, A.: Authoring Problem-Solving Tutors: A Comparison between ASTUS and CTAT. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 377–405. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Lebeau, J.-F., Paquette, L., Fortin, M., Mayers, A.: An Authoring Language as a Key to Usability in a Problem-Solving ITS Framework. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part II. LNCS, vol. 6095, pp. 236–238. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Paquette, L., Lebeau, J.-F., Mayers, A.: Integrating Sophisticated Domain-Independent Pedagogical Behaviors in an ITS Framework. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part II. LNCS, vol. 6095, pp. 248–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Ohlsson, S.: Deep Learning: How the Mind Overrides Experience. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
  6. 6.
    VanLehn, K.: The Behavior of Tutoring Systems. International Journal of Artificial Intelligence in Education 16(3), 227–265 (2006)Google Scholar
  7. 7.
    Aleven, V.: Rule-Based Cognitive Modeling for Intelligent Tutoring Systems. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 33–62. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Barnes, T., Stamper, J.: Toward Automatic Hint Generation for Logic Proof Tutoring Using Historical Student Data. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 373–382. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Anderson, J.R., Corbett, A.T., Koedinger, K.R., Pelletier, R.: Cognitive Tutors: Lessons Learned. The Journal of the Learning Sciences 4(2), 167–207 (1995)CrossRefGoogle Scholar
  10. 10.
    Paquette, L., Lebeau, J.-F., Mbungira, J.P., Mayers, A.: Generating Task-Specific Next-Step Hints Using Domain-Independent Structures. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS, vol. 6738, pp. 525–527. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Blanchard, E.G., Mizoguchi, R.: Designing Culturally-Aware Tutoring Systems: Toward an Upper Ontology of culture. In: Blanchard, E., Allard, D. (eds.) Culturally Aware Tutoring Systems, CATS 2008, pp. 23–24 (2008)Google Scholar
  12. 12.
    Woolf, B., Burleson, W., Arroyo, I., Dragon, T., Cooper, D., Picard, R.: Affect-Aware Tutors: Recognising and Responding to Student Affect. Journal of Learning Technology 4, 129–163 (2009)CrossRefGoogle Scholar
  13. 13.
    VanLehn, K.: Mind Bugs: The Origin of Procedural Misconceptions. MIT Press (1990)Google Scholar
  14. 14.
    Paquette, L., Lebeau, J.F., Mayers, A.: Modeling Learner’s Erroneous Behaviours in Model Tracing Tutors. In: Proceedings of UMAP 2012 (accepted, 2012)Google Scholar
  15. 15.
    Mitrovic, A.: Modeling Domains and Students with Constraint-Based Modeling. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. SCI, vol. 308, pp. 63–80. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luc Paquette
    • 1
  • Jean-François Lebeau
    • 1
  • Gabriel Beaulieu
    • 1
  • André Mayers
    • 1
  1. 1.Université de SherbrookeCanada

Personalised recommendations