Categorical vs. Dimensional Representations in Multimodal Affect Detection during Learning

  • Md. Sazzad Hussain
  • Hamed Monkaresi
  • Rafael A. Calvo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7315)


Learners experience a variety of emotions during learning sessions with Intelligent Tutoring Systems (ITS). The research community is building systems that are aware of these experiences, generally represented as a category or as a point in a low-dimensional space. State-of-the-art systems detect these affective states from multimodal data, in naturalistic scenarios. This paper provides evidence of how the choice of representation affects the quality of the detection system. We present a user-independent model for detecting learners’ affective states from video and physiological signals using both the categorical and dimensional representations. Machine learning techniques are used for selecting the best subset of features and classifying the various degrees of emotions for both representations. We provide evidence that dimensional representation, particularly using valence, produces higher accuracy.


Affect multimodality machine learning learning interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’Mello, S., Craig, S., Witherspoon, A., Mcdaniel, B., Graesser, A.: Automatic detection of learner’s affect from conversational cues. User Modeling and User-Adapted Interaction 18, 45–80 (2008)CrossRefGoogle Scholar
  2. 2.
    Csikszentmihalyi, M.: Flow: The psychology of optimal experience. Harper and Row, New York (1990)Google Scholar
  3. 3.
    Graesser, A., McDaniel, B., Chipman, P., Witherspoon, A., D’Mello, S., Gholson, B.: Detection of emotions during learning with AutoTutor. In: Proceedings of the 28th Annual Meetings of the Cognitive Science Society, pp. 285–290 (2006)Google Scholar
  4. 4.
    Craig, S., Graesser, A., Sullins, J., Gholson, B.: Affect and learning: an exploratory look into the role of affect in learning with AutoTutor. Learning, Media and Technology 29, 241–250 (2004)Google Scholar
  5. 5.
    Calvo, R.A., D’Mello, S.: New Perspectives on Affect and Learning Technologies. Explorations in the Learning Sciences, Instructional Systems and Performance Technologies, vol. 3. Springer, New York (2011)Google Scholar
  6. 6.
    Klein, J., Moon, Y., Picard, R.: This computer responds to user frustration: Theory, design, and results. Interacting with Computers 14, 119–140 (2002)CrossRefGoogle Scholar
  7. 7.
    Hussain, M.S., AlZoubi, O., Calvo, R.A., D’Mello, S.K.: Affect Detection from Multichannel Physiology during Learning Sessions with AutoTutor. In: Biswas, G., Bull, S., Kay, J., Mitrovic, A. (eds.) AIED 2011. LNCS(LNAI), vol. 6738, pp. 131–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Graesser, A.C., Chipman, P., Haynes, B.C., Olney, A.: AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on Education 48, 612–618 (2005)CrossRefGoogle Scholar
  9. 9.
    Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor, J.: Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine 18, 32–80 (2001)CrossRefGoogle Scholar
  10. 10.
    Polzin, T.: Detecting Verbal and Non-verbal cues in the communication of emotion. Unpublished Doctoral Dissertation, School of Computer Science, Carnegie Mellon University (2000)Google Scholar
  11. 11.
    Yacoob, Y., Davis, L.: Recognizing human facial expressions from long image sequences using optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 636–642 (1996)CrossRefGoogle Scholar
  12. 12.
    Aghaei Pour, P., Hussain, M.S., AlZoubi, O., D’Mello, S., Calvo, R.A.: The Impact of System Feedback on Learners’ Affective and Physiological States. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 264–273. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Calvo, R.A., D’Mello, S.: Affect Detection: An Interdisciplinary Review of Models, Methods, and their Applications. IEEE Transactions on Affective Computing 1, 18–37 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Md. Sazzad Hussain
    • 1
    • 2
  • Hamed Monkaresi
    • 2
  • Rafael A. Calvo
    • 2
  1. 1.National ICT Australia (NICTA)Australian Technology ParkEveleighAustralia
  2. 2.School of Electrical and Information EngineeringUniversity of SydneyAustralia

Personalised recommendations