On Mobile Target Allocation with Incomplete Information in Defensive Environments

  • Marin Lujak
  • Holger Billhardt
  • Sascha Ossowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7327)

Abstract

In this paper, the decentralized mobile target allocation problem is researched. We assume the existence of two groups of mobile agents: attackers and targets. Every attacker agent gets allocated to its best target based on the communication and coordination with the rest of the group positioned within a limited communication range (radius) and moves towards it. This is performed through the dynamic iterative auction algorithm with mobility without any insight in the decision-making processes of the other agents. Targets are mobile and combine two strategies to escape from the attacking group: moving linearly and randomly away from the attacker. We explore the dynamics of the allocation solution in respect to the mentioned escape strategies, maximum step size in each run (velocity), and the agents’ varying communication range when the latter is not sufficient to maintain a connected communication graph.

Keywords

Multiagent System Mobile Agent Communication Range Task Allocation Communication Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alighanbari, M., How, J.P.: Robust decentralized task assignment for cooperative UAVs. In: Proc. of AIAA Conf. on Guidance, Navigation and Control (2006)Google Scholar
  2. 2.
    Bertsekas, D.P.: Auction algorithms for network flow problems: A tutorial introduction. Comput. Opt. and Applications 1(1), 7–66 (1992)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task allocation. IEEE Transactions on Robotics 25(4), 912–926 (2009)CrossRefGoogle Scholar
  4. 4.
    Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proc. of IEEE, Spec. Iss. on Multirob. Coord. 94(7), 1257–1270 (2006)Google Scholar
  5. 5.
    Díaz, J., Mitsche, D., et al.: On the connectivity of dynamic random geometric graphs. In: Proc. of 19th ACM-SIAM Symposium on Discrete Algorithms, pp. 601–610 (2008)Google Scholar
  6. 6.
    Elango, M., Nachiappan, S., Tiwari, M.K.: Balancing task allocation in multi-robot systems using k means clustering and auction based mechanisms. Expert Systems With Applications 38(6), 6486–6491 (2010)CrossRefGoogle Scholar
  7. 7.
    Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. The Intern. Journ. of Rob. Research 23(9), 939–954 (2004)CrossRefGoogle Scholar
  8. 8.
    Gerkey, B.P., Matarić, M.J.: Multi-robot task allocation: Analyzing the complexity and optimality of key architectures. In: Proc. of ICRA 2003, vol. 3, pp. 3862–3868 (2003)Google Scholar
  9. 9.
    Gerkey, B.P., Matarić, M.J.: Sold!: Auction methods for multi-robot control. Proc. IEEE Trans. on Robotics and Automat. 18(5), 758–768 (2002)CrossRefGoogle Scholar
  10. 10.
    Gil, A.E., Passino, K.M., Ganapathy, S., Sparks, A.: Cooperative scheduling of tasks for networked uninhabited autonomous vehicles. In: Proc. of 42nd IEEE Conf. on Decision and Control, pp. 522–527 (2003)Google Scholar
  11. 11.
    Hoeing, M., Dasgupta, P., Petrov, P., O’Hara, S.: Auction-based multi-robot task allocation in comstar. In: Proc. of the 6th Inter. Joint Conf. on Auton. Agents and Multiagent Systems, pp. 1–8 (2007)Google Scholar
  12. 12.
    Lerman, K., Jones, C., Galstyan, A., Matarić, M.J.: Analysis of dynamic task allocation in multi-robot systems. The Intern. Journal of Robotics Research 25(3), 225–253 (2006)CrossRefGoogle Scholar
  13. 13.
    Lujak, M., Giordani, S.: On the Communication Range in Auction-Based Multi-Agent Target Assignment. In: Bettstetter, C., Gershenson, C. (eds.) IWSOS 2011. LNCS, vol. 6557, pp. 32–43. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Lujak, M., Giordani, S., Ossowski, S.: Value of Incomplete Information in Mobile Target Allocation. In: Klügl, F., Ossowski, S. (eds.) MATES 2011. LNCS (LNAI), vol. 6973, pp. 89–100. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Nanjanath, M., Gini, M.: Repeated auctions for robust task execution by a robot team. Robotics and Autonomous Sys. 58(7), 900–909 (2010)CrossRefGoogle Scholar
  16. 16.
    Ponda, S., Redding, J., Choi, H.L., How, J.P., Vavrina, M., Vian, J.: Decentralized planning for complex missions with dynamic communication constraints. In: American Control Conference (ACC), pp. 3998–4003 (2010)Google Scholar
  17. 17.
    Penrose, M.: Random geometric graphs. Oxford Univ. Press, USA (2003)MATHCrossRefGoogle Scholar
  18. 18.
    Santi, P.: The critical transmitting range for connectivity in mobile ad hoc networks. IEEE Trans. on Mob. Comp. 4(3), 310–317 (2005)CrossRefGoogle Scholar
  19. 19.
    Santi, P., Blough, D.M.: An evaluation of connectivity in mobile wireless ad hoc networks. In: Proc. of Int. Conf. on Depend. Sys. and Netw., pp. 89–98 (2002)Google Scholar
  20. 20.
    Savkin, A.V.: The problem of coordination and consensus achievement in groups of autonomous mobile robots with limited communication. Nonlinear Analysis 65(5), 1094–1102 (2006)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Zavlanos, M.M., Spesivtsev, L., Pappas, G.J.: A distributed auction algorithm for the assignment problem. In: Proc. of 47th IEEE Conf. on Dec. and Contr., pp. 1212–1217 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marin Lujak
    • 1
  • Holger Billhardt
    • 1
  • Sascha Ossowski
    • 1
  1. 1.University Rey Juan CarlosMóstolesSpain

Personalised recommendations