An Influence of Random Number Generation Function to Multiagent Systems

  • Dominik Vymětal
  • Marek Spišák
  • Roman Šperka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7327)


The paper deals with modeling and simulation of business processes. A multiagent system was implemented as a tool to manage the simulation. Multiagent systems often operate with random (respectively pseudorandom) generated parameters in order to represent unpredictable phenomena. The aiml of the paper is to show the influence of different random number generation functions to the real multiagent system outputs. It is obvious, that outputs of the multiagent system simulation differs from turn to turn, but the motivation was to find, if the differences are significant. An accurate number of agents with the same parameters were used for each case, with different kinds of randomness while generating agent’s internal state attributes. The results obtained show that using inappropriate random number generation function leads to significant output data distortion, so the generation function selection must be done very carefully.


random pseudorandom generation function multiagent simulation modeling business process 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellifemine, F., Caire, G., Trucco, T.: Jade Programmer’s Guide. Java Agent Development Framework (2010),
  2. 2.
    De Snoo, C.: Modelling planning processes with TALMOD. Master’s thesis, University of Groningen (2005)Google Scholar
  3. 3.
    Dyer, D.W.: Uncommons Maths - Random number generators, probability distributions, combinatorics and statistics for Java (2010),
  4. 4.
    Foundation for Intelligent Physical Agents (FIPA), FIPA Contract Net Interaction Protocol. In Specification (online). FIPA (2002), (cit. June 13, 2011)
  5. 5.
    Jennings, N.R., Faratin, P., Norman, T.J., O’Brien, P., Odgers, B.: Autonomous agents for business process management. Int. Journal of Applied Artificial Intelligence 14, 145–189 (2000)CrossRefGoogle Scholar
  6. 6.
    Macal, C.M., North, J.N.: Tutorial on Agent-based Modeling and Simulation. In: Proceedings: 2005 Winter Simulation Conference (2005)Google Scholar
  7. 7.
    Moreno, A., Valls, A., Marín, M.: Multi-agent Simulation of Work Teams. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 281–291. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Scheer, A.-W., Nüttgens, M.: ARIS Architecture and Reference Models for Business Process Management. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 376–389. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Sierhuis, M.: Modeling and Simulating Work Practice. PhD thesis, University of Amsterdam (2001)Google Scholar
  10. 10.
    Vymetal, D., Sperka, R.: Agent-based Simulation in Decision Support Systems. In: Proceedings of Distance Learning, Simulation and Communication (2011) ISBN 978-80-7231-695-3Google Scholar
  11. 11.
    Wolf, P.: Úspěšný podnik na globálním trhu. CS Profi-Public, Bratislava (2006)Google Scholar
  12. 12.
    Wooldridge, M.: MultiAgent Systems: An Introduction to, 2nd edn. John Wiley & Sons Ltd., Chichester (2009)Google Scholar
  13. 13.
    Yan, Y., Maamar, Z., Shen, W.: Integration of Workflow and Agent Technology for Business Process Management (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dominik Vymětal
    • 1
  • Marek Spišák
    • 1
  • Roman Šperka
    • 1
  1. 1.School of Business Administration in Karviná, Department of InformaticsSilesian University in OpavaKarvináCzech Republic

Personalised recommendations