A Self-adaptive Multi-Agent System for Abnormal Behavior Detection in Maritime Surveillance

  • Nicolas Brax
  • Eric Andonoff
  • Marie-Pierre Gleizes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7327)


This paper presents a MAS dedicated to abnormal behaviors detection and alerts triggering in the maritime surveillance area. This MAS uses anomalies issued from an experienced Rule Engine implementing maritime regulation. It evaluates ships behavior cumulating the importance of related anomalies and triggers relevant alerts towards human operators involved in maritime surveillance. These human operators evaluate triggered alerts and confirm or invalidate them. Invalidated alerts are sent back to the MAS for a learning step since it self-adapts anomalies values to be consistent with human operators feedbacks. This MAS is implemented in the context of the project I2C, an EU funded project dedicated to abnormal ships behavior detection and early identification of threats such as oil slick, illegal fishing, or lucrative criminal activities (e.g. goods, drugs, or weapons smuggling).


Maritime Surveillance Alert Learning Adaptive MAS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Henocque, Y., Lafon, X.: EUs Strategy on Maritime & Environmental Issues in the Four Seas: multilateral approaches in the Baltic, Black, Caspian & Mediterranean Seas. The EU and Europes Sea Basins, Tallinn (2011)Google Scholar
  2. 2.
    Ince, A., Topuz, E., Panayirci, E.: Principles of Integrated Maritime Surveillance System. Springler, Netherlands (1999)CrossRefGoogle Scholar
  3. 3.
    Rasheed, Z., Shafique, K., Yu, L., Lee, M., Ramnath, K., Choe, T.E., Javed, O., Haering, N.: Distributed Sensor Networks for Visual Surveillance. In: Distributed Video Sensor Networks, pp. 439–449 (2011)Google Scholar
  4. 4.
    Battistello, G., Ulmke, M., Koch, W.: Knowledge-aided multisensor data fusion for maritime surveillance. In: Proceedings of SPIE, vol. 8047 (2011)Google Scholar
  5. 5.
    Wang, B., Ye, M., Li, X., Zhao, F., Ding, J.: Abnormal crowd behavior detection using high-frequency and spatio-temporal features. In: Machine Vision and Applications, pp. 1–11 (2011)Google Scholar
  6. 6.
    Aliakbarpour, H., Khoshhal, K., Quintas, J., Mekhnacha, K., Ros, J., Andersson, M., Dias, J.: HMM-Based Abnormal Behaviour Detection Using Heterogeneous Sensor Network. In: Camarinha-Matos, L.M. (ed.) Technological Innovation for Sustainability. IFIP AICT, vol. 349, pp. 277–285. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Morel, M., Claisse, S.: Integrated System for Interoperable sensors & Information sources for Common abnormal vessel behaviour detection & Collaborative identification of threat (I2C). In: Proc. of the Ocean and Coastal Observation: Sensors and Observing Systems, Numerical Models and Information Systems, Brest, France (2010)Google Scholar
  8. 8.
    Li, X., Xue, Y., Chen, Y., Mali, B.: Context-aware anomaly detection for electronic medical record systems. In: Proceedings of the 2nd USENIX Conference on Health Security and Privacy, p. 8 (2011)Google Scholar
  9. 9.
    Gupta, S., Hossain, L.: Towards near-real-time detection of insider trading behaviour through social networks. Computer Fraud & Security 2011(1), 7–16 (2011)CrossRefGoogle Scholar
  10. 10.
    Shi, Y., Tian, Y., Kou, G., Peng, Y., Li, J.: Network Intrustion Detection. In: Optimization Based Data Mining: Theory and Applications, pp. 237–241 (2001)Google Scholar
  11. 11.
    Fok, V., Lingard, D.M.: Using a Genetic Algorithm to Optimise Maritime Surveillance Performed by Space-based Sensors. National Committee for Space Science & National Space Society of Australia, Barry Drive, Australian National University, Canberra, ACT, Australia (2011)Google Scholar
  12. 12.
    Celik, M., Dadaser-Celik, F., Dokuz, A.S.: Anomaly detection in temperature data using DBSCAN algorithm. In: IEEE Innovations in Intelligent Systems and Applications (INISTA), pp. 91–95 (2011)Google Scholar
  13. 13.
    Tan, K.: A multi-agent system for tracking the intent of surface contacts in ports and waterways. Naval Postgraduate School Monterey CA (2005)Google Scholar
  14. 14.
    Jakob, M., Vaněk, O., Urban, Š., Benda, P., Pěchouček, M.: AgentC: agent-based testbed for adversarial modeling and reasoning in the maritime domain. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 1641–1642 (2010)Google Scholar
  15. 15.
    Gupta, K.M., Aha, D.W., Moore, P.: Case-Based Collective Inference for Maritime Object Classification. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 434–449. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Nilsson, M., van Laere, J., Ziemke, T., Edlund, J.: Extracting rules from expert operators to support situation awareness in maritime surveillance. In: Proceedings of the Eleventh International Conference on Information Fusion. IEEE (2008)Google Scholar
  17. 17.
    Auslander, B., Gupta, K.M., Aha, D.W.: A comparative evaluation of anomaly detection algorithms for maritime video surveillance. In: Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 8019, p. 3 (2011)Google Scholar
  18. 18.
    Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE: A Methodology for Adaptive Multi-agent Systems Engineering. In: Petta, P., Tolksdorf, R., Zambonelli, F. (eds.) ESAW 2002. LNCS (LNAI), vol. 2577, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Gleizes, M.-P., Camps, V., Georgé, J.-P., Capera, D.: Engineering Systems Which Generate Emergent Functionalities. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 58–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-organising Software - From Natural to Artificial Adaptation. Springer Natural Computing Series (2011)Google Scholar
  21. 21.
    Ristic, B., La Scala, B., Morelande, M., Gordon, N.: Statistical analysis of motion patterns in AIS data: Anomaly detection and motion prediction. In: 11th International Conference on Information Fusion, pp. 1–7 (2008)Google Scholar
  22. 22.
    Mano, J.-P., Georgé, J.-P., Gleizes, M.-P.: Adaptive Multi-agent System for Multi-sensor Maritime Surveillance. In: Demazeau, Y., Dignum, F., Corchado, J.M., Pérez, J.B. (eds.) Advances in PAAMS. AISC, vol. 70, pp. 285–290. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    DCNS: Description of Work. Project I2C (2010)Google Scholar
  24. 24.
    Tsankova, D.D., Georgieva, V.S.: From local actions to global tasks: simulation of stigmergy based foraging behavior. Intelligent Systems, 353–358 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Brax
    • 1
  • Eric Andonoff
    • 1
  • Marie-Pierre Gleizes
    • 1
  1. 1.IRITToulouse CedexFrance

Personalised recommendations