Soil Organic Matter

  • Hans-Peter Blume
  • Gerhard W. Brümmer
  • Heiner Fleige
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke


In most topsoils, the mass of the soil organic matter only amounts to a few percent, but has an important influence on all soil functions and plays a central role in the global carbon cycle. For this reason, the carbon content, or the dark color value, is a differentiating criterion for soil descriptions in German and international classifications.


Organic Matter Soil Organic Matter Microbial Biomass Clay Fraction Plant Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Supplementary Reading

  1. Baldock JA, Broos (2011) Soil organic matter, chap. II-1. In: Hunag PM, Li Y, Sumner ME (Hrsg) Handbook of soil science. CRC, Boca Raton Google Scholar
  2. Doerr SH, Ritsema CJ, Dekker LW, Scott DF, Carter D (2007) Water repellence of soils: new insights and emerging research needs. Hydrol Process 21:2223–2228CrossRefGoogle Scholar
  3. ECCP (European Climate Change Programme) (2003) Working group sinks related to agricultural soils. Final report, 76 pGoogle Scholar
  4. Gregorich EG, Beare MH, Mckim UF, Skjemstad JO (2006) Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70:975–985CrossRefGoogle Scholar
  5. Hedges JI, Eglington G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, De Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958CrossRefGoogle Scholar
  6. Helfrich M, Flessa H, Mikutta R, Dreves A, Ludwig B (2007) Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58:1316–1329CrossRefGoogle Scholar
  7. Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc B 329:361–368CrossRefGoogle Scholar
  8. Kalbitz K, Glaser B, Bol R (2004) Clear-cutting of a Norway spruce stand: implications for controls on the dynamics of dissolved organic matter in the forest floor. Eur J Soil Sci 55:401–413CrossRefGoogle Scholar
  9. Kalbitz K, Meyer A, Yang R, Gerstberger P (2007) Response of dissolved organic matter in the forest floor to long-term manipulation of litter and throughfall inputs. Biogeochemistry 86:301–318Google Scholar
  10. Knicker H (2007) How does fire affect the nature and stability of soil organic nitrogen and carbon?—a review. Biogeochemistry 85:91–118Google Scholar
  11. Knorr W, Prentice I, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301CrossRefGoogle Scholar
  12. Kögel-Knabner I (2002) A review on the macromolecular organic composition in plant and microbial residues as input to soil. Soil Biol Biochem 34:139–162CrossRefGoogle Scholar
  13. Lal R (2008) Soils and sustainable agriculture. A review. Agron Sustain Dev 28:57–64CrossRefGoogle Scholar
  14. Marschner BS, Brodowski A, Dreves G, Gleixner P-M, Grootes U, Hamer A, Heim G, Jandl R, Ji K, Kaiser K, Kalbitz C, Kramer P, Leinweber J, Rethemeyer MWI, Schmidt L Schwark, Wiesenberg GLB (2008) How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171:91–110CrossRefGoogle Scholar
  15. Neumann F (1979) Böden in Landschaftsausschnitten Bayerns. II. Südliches Tertiär-Hügelland und Ampertal. Bayer Landw Jb 56:960–971Google Scholar
  16. Oades JM (1988) The retention of organic matter in soils. Biogeochemistry 5:35–70CrossRefGoogle Scholar
  17. Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142CrossRefGoogle Scholar
  18. Schöning I, Kögel-Knabner I (2006) Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38:2411–2424CrossRefGoogle Scholar
  19. Smith P, Powlson DS, Smith JU, Falloon P, Coleman K (2000) Meeting Europe’s climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Glob Change Biol 6:525–539CrossRefGoogle Scholar

Cited References

  1. Amelung W, Brodowski S, Sandhage-Hofmann A, Bol R (2008) Combining biomarker with stable isotope analyses for assessing the ttransformation and turnover of soil organic matter. Adv Agron 100:155–250CrossRefGoogle Scholar
  2. Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163CrossRefGoogle Scholar
  3. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. Glob Change Biol Bioenergy 5:202–214CrossRefGoogle Scholar
  4. Blair N, Faulkner RD, Till AR, Poulton PR (2006) Long-term management impacts on soil C, N and physical fertility—part 1: broadbalk experiment. Soil Tillage Res 91:30–38CrossRefGoogle Scholar
  5. Börjesson G, Menichetti L, Kirchmann H, Kätterer T (2012) Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol Fertil Soils 48:245–257CrossRefGoogle Scholar
  6. Christensen BT (2001) Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52(3):345–353CrossRefGoogle Scholar
  7. Coleman K, Jenkinson DS (1999) RothC-26.3, a model for the turnover of carbon in soil: model description and user’s guide. Lawes Agricultural Trust, Harpenden, UKGoogle Scholar
  8. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173Google Scholar
  9. Dendoncker N, Van Wesemael B, Rounsevell MDA, Roelandt C, Lettens S (2004) Belgium’s CO2 mitigation potential under improved cropland management. Agric Ecosyst Environ 103:101–116CrossRefGoogle Scholar
  10. Eusterhues K, Rumpel C, Kleber M, Kögel-Knabner I (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34:1591–1600CrossRefGoogle Scholar
  11. Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56:753–763Google Scholar
  12. Fengel, D, Wegener G (1989) Wood: chemistry, ultrastructure, reactions. De Gruyter, BerlinGoogle Scholar
  13. Flessa H, Amelung W, Helfrich M, Wiesenberg GLB, Gleixner G, Brodowski S, Rethemeyer J, Kramer C, Grootes P-M (2008) Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171:36–51CrossRefGoogle Scholar
  14. Freibauer A, Rounsevell MDA, Smith P, Verhagen J (2004) Carbon sequestration in the agricultural soils of Europe. Geoderma 122:1–23CrossRefGoogle Scholar
  15. Garten J, Charles T, Hanson PJ (2006) Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136:342–352CrossRefGoogle Scholar
  16. Guggenberger G, Zech W, Haumaier L, Christensen BT (1994) Land use effects on the composition of organic matter in particle-size separates of soils. II. CP-MAS and solution 13C-NMR analysis. Eur J Soil Sci 46:147–158CrossRefGoogle Scholar
  17. Gurwick NP, Moore LA, Kelle C, Elias P (2013) A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy. PLoS ONE 8(9):e75932CrossRefGoogle Scholar
  18. Haider K (1992) Problems related to the humification processes in soils of the temperate climate. In: Bollag J-M, Stotzky G (Hrsg) Soil biochemistry, vol 7. Dekker, New York, pp 55–94Google Scholar
  19. Haynes RJ (2005) Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85:221–268CrossRefGoogle Scholar
  20. Jenkinson DS (1977) Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C-labelled ryegrass decomposing under field conditions. J Soil Sci 28:424–434CrossRefGoogle Scholar
  21. Jenkinson DS (1981) The fate of plant and animal residues in soil. In: Hayes MHB (ed) The chemistry of soil processes. Wiley, Chichester, pp 505–561Google Scholar
  22. Jenkinson DS (1988) Soil organic matter and its dynamics. In: Waid A (Hrsg) Russel’s soil conditions and plant growth, 11th edn. Longman, Harlow, pp 564–607Google Scholar
  23. John B, Yamashita T, Ludwig B, Flessa H (2005) Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128:63–79CrossRefGoogle Scholar
  24. Kalbitz K, Kaiser K, Fiedler S, Kölbl A, Amelung W, Bräuer T, Cao ZH, Don A, Grootes P, Jahn R, Schwark L, Vogelsang V, Wissing L, Kögel-Knabner I (2013) The carbon count of 2000 years of rice cultivation. Glob Change Biol 19:1107–1113Google Scholar
  25. Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008a) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82Google Scholar
  26. Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B, von Lützow M (2008b) An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171:5–13Google Scholar
  27. Körschens M, Albert E, Armbruster M, Barkusky D, Baumecker M, Behle-Schalk L, Bischoff R, Cergan Z, Ellmer F, Herbst F, Hoffmann S, Hofmann B, Kismanyoky T, Kubat J, Kunzova E, Lopez-Fando C, Merbach I, Merbach W, Pardor MT, Rogasik J, Ruhlmann J, Spiegel H, Schulz E, Tajnsek A, Toth Z, Wegener H, Zorn W (2013) Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch Agron Soil Sci 59:1017–1040CrossRefGoogle Scholar
  28. Ladd JN, Foster RC, Nannipieri P, Oades JM (1996) Soil structure and biological activity. In: Bollag J-M, Stotzky G (Hrsg) Soil biochemistry, vol 9. Dekker, New York, pp 23–78Google Scholar
  29. Lair GH, Gerzabek MH, Haberhauer G (2007) Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett 5:23–27Google Scholar
  30. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627CrossRefGoogle Scholar
  31. Ludwig B, Helfrich M, Flessa H (2005) Modelling the long-term stabilization of carbon from maize in a silty soil. Plant Soil 278:315–325CrossRefGoogle Scholar
  32. Manna MC, Swarup A, Wanjari RH, Mishra B, Shahi DK (2007) Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res 94:397–409CrossRefGoogle Scholar
  33. Olah G-M, Reisinger O, Kilbertus G (1978) Biodégradation et humification. Atlas ultrastructural. Presses de l’université Laval, QuebecGoogle Scholar
  34. Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832CrossRefGoogle Scholar
  35. Rethemeyer J (2004) Organic carbon transformation in agricultural soils: radiocarbon analysis of organic matter fractions and biomarker compounds. Dissertation, Christian-Albrechts-UniversitätGoogle Scholar
  36. Scharlemann JPW, Tanner EVJ, Hiederer R, Kapos V (2014) Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5:81–91Google Scholar
  37. Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56Google Scholar
  38. Schulten H-R, Leinweber P (2000) New insights into organo-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30:399–432CrossRefGoogle Scholar
  39. Schuur EAG, Abbott BW, Bowden WB, Brovkin V, Camill P, Canadell JG, Chanton JP, Chapin FS III, Christensen TR, Ciais P, Crosby BT, Czimczik CI, Grosse G, Harden J, Hayes DJ, Hugelius G, Jastrow JD, Jones JB, Kleinen T, Koven CD, Krinner G, Kuhry P, Lawrence DM, McGuire AD, Natali SM, O’Donnell JA, Ping CL, Riley WJ, Rinke A, Romanovsky VE, Sannel ABK, Schädel C, Schaefer K, Sky J, Subin ZM, Tarnocai C, Turetsky MR, Waldrop MP, Walter Anthony KM, Wickland KP, Wilson CJ, Zimov SA (2013) Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change 119:359–374Google Scholar
  40. Six J, Feller C, Denef K, Ogle SM, de Moraes Sa JC, Albrecht A (2002) Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22:755–775Google Scholar
  41. Smith P (2004) Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20:229–236CrossRefGoogle Scholar
  42. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell, OxfordGoogle Scholar
  43. Trumbore SE (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10:399–411CrossRefGoogle Scholar
  44. Vleeshouwers LM, Verhagen A (2002) Carbon emission and sequestration by agricultural land use: a model study for Europe. Glob Change Biol 8:519–530CrossRefGoogle Scholar
  45. von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445CrossRefGoogle Scholar
  46. von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207CrossRefGoogle Scholar
  47. Waksman SA (1938) Humus: origin, chemical composition and importance to nature. Baillière, Tindall & Cox, LondonGoogle Scholar
  48. Wiesmeier M, Spörlein P, Geuß U, Hangen E, Haug S, Reischl A, Schilling B, von Lützow M, Kögel-Knabner I (2012) Soil organic carbon stocks in southeast Germany (Bavaria) as affected by land use, soil type and sampling depth. Glob Change Biol 18:2233–2245CrossRefGoogle Scholar
  49. Yang XY, Ren WD, Sun BH, Zhang SL (2012) Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177:49–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hans-Peter Blume
    • 1
  • Gerhard W. Brümmer
    • 6
  • Heiner Fleige
    • 1
  • Rainer Horn
    • 1
  • Ellen Kandeler
    • 2
  • Ingrid Kögel-Knabner
    • 3
  • Ruben Kretzschmar
    • 4
  • Karl Stahr
    • 2
  • Berndt-Michael Wilke
    • 5
  1. 1.Institute of Plant Nutrition and Soil SciencesChristian-Albrechts-University zu KielKielGermany
  2. 2.Institute for Soil Science and Land EvaluationHohenheim UniversityStuttgartGermany
  3. 3.Chair of Soil ScienceTechnische Universität MünchenFreising-WeihenstephanGermany
  4. 4.Institute of Biogeochemistry and Pollutant DynamicsETH ZurichZurichSwitzerland
  5. 5.Institute of EcologyTechnical University BerlinBerlinGermany
  6. 6.Institute of Crop Science and Resource ConservationUniversity of BonnBonnGermany

Personalised recommendations