Pulse Self-Compression in Femtosecond Filaments

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the current chapter, various theoretical and experimental aspects of pulse self-compression in femtosecond filaments are discussed. The main message of the theoretical part is that filamentary self-compression relies on fundamentally different mechanisms than traditional pulse compression schemes in single-mode-, microstructure-, photonic crystal- and gas filled hollow fibers.

Keywords

Rogue Wave Pulse Compression Spectral Phase Exit Window Nonlinear Focus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.V. Shank, R.L. Fork, R. Yen, R.H. Stolen, W.J. Tomlinson, Compression of femtosecond optical pulses. Appl. Phys. Lett. 40, 761 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    B. Schenkel, R. Paschotta, U. Keller, Pulse compression with supercontinuum generation in microstructure fibers. J. Opt. Soc. Am. B 22, 687 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    J. Laegsgaard, P.J. Roberts, Dispersive pulse compression in hollow-core photonic bandgap fibers. Opt. Express 16, 9628 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Nisoli, S. DeSilvestri, O. Svelto, R. Szikops, K. Ferencz, C. Spielmann, S. Sartania, F. Krausz, Compression of high-energy laser pulses below 5 fs. Opt. Lett. 22, 522 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    E.B. Treacy, Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. 5, 454 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    S. Backus, C.G.D. III, M.M. Murnane, H.C. Kapteyn. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207 (1997)Google Scholar
  7. 7.
    R. Szipöcs, K. Ferencz, C. Spielmann, F. Krausz, Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19, 201 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    C.P. Hauri, W. Kornelis, F.W. Helbing, A. Heinrich, A. Couairon, A. Mysyrowicz, J. Biegert, U. Keller, Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79, 673 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    A. Demircan, M. Kroh, U. Bandelow, H. Bernd, H.-G. Weber, Compression limit by third-order dispersion in the normal dispersion regime. IEEE Photonics Tech. Lett. 18, 2353 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Kane, J. Squier, Grism-pair stretcher-compressor system for simultaneous second- and third-order dispersion compensation in chirped-pulse amplification. J. Opt. Soc. Am. B 14, 661 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    G. Stibenz, N. Zhavoronkov, G. Steinmeyer, Self-compression of milijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31, 274 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    I. Koprinkov, Ionization variation of the group velocity dispersion by high-intensity optical pulses. Appl. Phys. B 79, 359 (2004). ISSN 0946–2171, doi: 10.1007/s00340-004-1553-z
  13. 13.
    V.F. D’Yachenko, V.S. Imshenik, Magnetohydrodynamic theory of the pinch effect in a dense high-temperature plasma (dense plasma focus). Rev. Plasma Phys. 5, 447 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    J.B. Taylor, Relaxation of toroidal plasma and generation of reverse magnetic fields. Phys. Rev. Lett. 33, 1139 (1974)ADSCrossRefGoogle Scholar
  15. 15.
    S. Skupin, G. Stibenz, L. Berge, F. Lederer, T. Sokollik, M. Schnürer, N. Zhavoronkov, G. Steinmeyer, Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys. Rev. E 74, 056604 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A. Couairon, M. Franco, A. Mysyrowicz, J. Biegert, U. Keller, Pulse self-compression to the single-cycle limit by filamentation in a gas with a pressure gradient. Opt. Lett. 30, 2657 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    L.T. Vuong, R.B. Lopez-Martens, C.P. Hauri, A.L. Gaeta, Spectral reshaping and pulse compression via sequential filamentation in gases. Opt. Express 16, 390 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    C. Brée, A. Demircan, S. Skupin, L. Bergé, G. Steinmeyer, Self-pinching of pulsed laser beams during filamentary propagation. Opt. Express 17, 16429 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R. Fedele, P.K. Shukla, Self-consistent interaction between the plasma wake field and the driving relativistic electron beam. Phys. Rev. A 45, 4045 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    N.L. Wagner, E.A. Gibson, T. Popmintchev, I.P. Christov, M.M. Murnane, H.C. Kapteyn, Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. Phys. Rev. Lett. 93, 173902 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    L. Bergé, A. Couairon, Gas-induced solitons. Phys. Rev. Lett. 86, 1003 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    A.M. Perelomov, V.S. Popov, M.V. Terent’ev, Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924 (1966)ADSGoogle Scholar
  23. 23.
    L. Bergé, A. Couairon, Nonlinear propagation of self-guided ultra-short pulses in ionized gases. Phys. Plasmas 7, 210 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Darwish, On integral equations of Urysohn-Volterra type. Appl. Math. Comput. 136, 93 (2003). ISSN 0096–3003Google Scholar
  25. 25.
    E. Babolian, F. Fattahzadeh, E.G. Raboky, A Chebyshev approximation for solving nonlinear integral equations of Hammerstein type. Appl. Math. Comput. 189, 641 (2007)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    C.W. Clenshaw, A.R. Curtis, A method for numerical integration on an automatic computer. Numerische Mathematik, 2, 197 (1960). ISSN 0029–599X, doi: 10.1007/BF01386223
  27. 27.
    S.L. Chin, Y. Chen, O. Kosareva, V.P. Kandidov, F. Théberge, What is a filament? Laser Phys. 18, 962 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    M. Mlejnek, E.M. Wright, J.V. Moloney, Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23, 382 (1998)ADSCrossRefGoogle Scholar
  29. 29.
    S. Akturk, C. D’Amico, M. Franco, A. Couairon, A. Mysyrowicz, Pulse shortening, spatial mode cleaning, and intense terahertz generation by filamentation in xenon. Phys. Rev. A 76, 063819 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    S. Akturk, A. Couairon, M. Franco, A. Mysyrowicz, Spectrogram representation of pulse self compression by filamentation. Opt. Express 16, 17626 (2008)ADSCrossRefGoogle Scholar
  31. 31.
    C. Conti, S. Trillo, P.D. Trapani, G. Valiulis, A. Piskarskas, O. Jedrkiewicz, J. Trull, Nonlinear electromagnetic X waves. Phys. Rev. Lett. 90, 170406 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    A. Couairon, E. Gaižauskas, D. Faccio, A. Dubietis, P.D. Trapani, Nonlinear X-wave formation by femtosecond filamentation in Kerr media. Phys. Rev. E 73, 016608 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    A. Zaïr, A. Guandalini, F. Schapper, M. Holler, J. Biegert, L. Gallmann, A. Couairon, M. Franco, A. Mysyrowicz, U. Keller, Spatio-temporal characterization of few-cycle pulses obtained by filamentation. Opt. Express 15, 5394 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    C. Brée, A. Demircan, S. Skupin, L. Bergé, G. Steinmeyer, Plasma induced pulse breaking in filamentary self compression. Laser Phys. 20, 1107 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    V.P. Kandidov, S.A. Shlenov, O.G. Kosareva, Filamentation of high-power femtosecond laser radiation. Quantum Electron. 39, 205 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    C. Brée, A. Demircan, G. Steinmeyer, Method for computing the nonlinear refractive index via Keldysh theory. IEEE J. Quantum Electron. 4, 433 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    R.Y. Chiao, E. Garmire, C.H. Townes, Self-trapping of optical beams. Phys. Rev. Lett. 13, 479 (1964)ADSCrossRefGoogle Scholar
  38. 38.
    T.F. Coleman, Y. Li, An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418 (1996)MathSciNetMATHCrossRefGoogle Scholar
  39. 39.
    S. Henz, J. Herrmann, Two-dimensional spatial optical solitons in bulk Kerr media stabilized by self-induced multiphoton ionization: variational approach. Phys. Rev. E 53, 4092 (1996)ADSCrossRefGoogle Scholar
  40. 40.
    E. Esarey, P. Sprangle, J. Krall, A. Ting, Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 1879 (1997)ADSCrossRefGoogle Scholar
  41. 41.
    L. Berge, S. Skupin, R. Nuter, J. Kasparian, J.P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    S. Champeaux, L. Bergé, Postionization regimes of femtosecond laser pulses self-channeling in air. Phys. Rev. E 71, 046604 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water Part 1 Theory. J. Fluid Mech. 27, 417 (1967)ADSMATHCrossRefGoogle Scholar
  44. 44.
    V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear liquids. JETP 11, 471 (1966)Google Scholar
  45. 45.
    A. Smerzi, A. Trombettoni, P.G. Kevrekidis, A.R. Bishop, Dynamical superfluid-insulator transition in a chain of weakly coupled Bose–Einstein condensates. Phys. Rev. Lett. 89, 170402 (2002)ADSCrossRefGoogle Scholar
  46. 46.
    S. Champeaux, T. Passot, P.L. Sulem, Alfvén-wave filamentation. J. Plasma Phys. 58, 665 (1997)ADSCrossRefGoogle Scholar
  47. 47.
    E. Mjolhus, On the modulational instability of hydromagnetic waves parallel to the magnetic field. J. Plasma Phys. 16, 321 (1976)ADSCrossRefGoogle Scholar
  48. 48.
    K. Tai, A. Hasegawa, A. Tomita, Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56, 135 (1986)ADSCrossRefGoogle Scholar
  49. 49.
    J.M. Dudley, G. Genty, F. Dias, B. Kibler, N. Akhmediev, Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation. Opt. Express 17, 21497 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    A. Demircan, U. Bandelow, Analysis of the interplay between soliton fission and modulation instability in supercontinuum generation. Appl. Phys. B 86, 31 (2007). ISSN 0946–2171, doi: 10.1007/s00340-006-2475-8
  51. 51.
    A. Couairon, A. Mysyrowicz, Femtosecond filamentation in transparent media. Phys. Rep. 441, 47 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    D.R. Solli, C. Ropers, P. Koonath, B. Jalali. Optical rogue waves. Nature 450, 1054 (2007). ISSN 0028–0836Google Scholar
  53. 53.
    J. Kasparian, P. Béjot, J.-P. Wolf, J.M. Dudley, Optical rogue wave statistics in laser filamentation. Opt. Express 17, 12070 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    D.R. Solli, C. Ropers, B. Jalali, Active control of rogue waves for stimulated supercontinuum generation. Phys. Rev. Lett. 101, 233902 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    O. Kosareva, N. Panov, D. Uryupina, M. Kurilova, A. Mazhorova, A. Savel’ev, R. Volkov, V. Kandidov, S.L. Chin, Optimization of a femtosecond pulse self-compression region along a filament in air. Appl. Phys. B 91, 35 (2008). ISSN 0946–2171. doi: 10.1007/s00340-008-2959-9
  56. 56.
    P. Hauri, R.B. Lopez-Martens, C.I. Blaga, K.D. Schultz, J. Cryan, R. Chirla, P. Colosimo, G. Doumy, A.M. March, C. Roedig, E. Sistrunk, J. Tate, J. Wheeler, L.F. DiMauro, E.P. Power, Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 \(\mu \)m from an optical filament. Opt. Lett., 32, 868 (2007)Google Scholar
  57. 57.
    C. Brée, J. Bethge, S. Skupin, L. Bergé, A. Demircan, G. Steinmeyer, Cascaded self-compression of femtosecond pulses in filaments. New J. Phys. 12, 093046 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    A. Dalgarno, A.E. Kingston, The refractive indices and Verdet constants of the intert gases. Proc. Roy. Soc. A 259, 424 (1960)ADSCrossRefGoogle Scholar
  59. 59.
    H.J. Lehmeier, W. Leupacher, A. Penzkofer, Nonresonant third order hyperpolarizability of rare gases and N2 determined by third order harmonic generation. Opt. Commun. 56, 67 (1985)ADSCrossRefGoogle Scholar
  60. 60.
    D. Faccio, A. Averchi, A. Lotti, P.D. Trapani, A. Couairon, D. Papazoglou, S. Tzortzakis, Ultrashort laser pulse filamentation fromspontaneous X wave formation in air. Opt. Express 16, 1565 (2008)ADSCrossRefGoogle Scholar
  61. 61.
    C. Brée, A. Demircan, G. Steinmeyer, Modulation instability in filamentary self-compression. Laser Phys. 21, 1313 (2011). ISSN 1054–660X. doi: 10.1134/S1054660X11130044
  62. 62.
    S. Eisenmann, A. Pukhov, A. Zigler, Fine structure of a Laser-plasma filament in air. Phys. Rev. Lett. 98, 155002 (2007)ADSCrossRefGoogle Scholar
  63. 63.
    S. Linden, H. Giessen, J. Kuhl, XFROG—A new method for amplitude and phase characterization of weak ultrashort pulses. physica status solidi (b) 206, 119 (1998). ISSN 1521–3951Google Scholar
  64. 64.
    J. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, R. Windeler, Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments. Opt. Express 10, 1215 (2002)ADSGoogle Scholar
  65. 65.
    A.L. Gaeta, Catastrophic collapse of ultrashort pulses. Phys. Rev. Lett. 84, 3582 (2000)ADSCrossRefGoogle Scholar
  66. 66.
    M.A. Porras, A. Parola, D. Faccio, A. Couairon, P.D. Trapani, Light-filament dynamics and the spatiotemporal instability of the Townes profile. Phys. Rev. A 76, 011803(R) (2007)Google Scholar
  67. 67.
    L. Bergé, J.J. Rasmussen, Multisplitting and collapse of self-focusing anisotropic beams in normal/anomalous dispersive media. Phys. Plas. 3, 824 (1996)ADSCrossRefGoogle Scholar
  68. 68.
    L. Berge, K. Germaschewski, R. Grauer, J.J. Rasmussen, Hyperbolic shockwaves of the optical self-focusing with normal group-velocity dispersion. Phys. Rev. Lett. 89, 153902 (2002)ADSCrossRefGoogle Scholar
  69. 69.
    G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, San Diego, 2001)Google Scholar
  70. 70.
    D. Faccio, M.A. Porras, A. Dubietis, F. Bragheri, A. Couairon, P.D. Trapani, Conical emission, pulse splitting, and X-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys. Rev. Lett. 96, 193901 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    C. Iaconis, I.A. Walmsley, Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt. Lett. 23, 792 (1998)ADSCrossRefGoogle Scholar
  72. 72.
    C. Iaconis, I.A. Walmsley, Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEEE J. Quantum Electron. 35, 501 (1999)ADSCrossRefGoogle Scholar
  73. 73.
    L. Gallmann, D.H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, I.A. Walmsley, Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction. Opt. Lett. 24, 1314 (1999)ADSCrossRefGoogle Scholar
  74. 74.
    B.A. Malomed, D. Mihalache, F. Wise, L. Torner, Spatiotemporal optical solitons. J. Opt. B 7, R53 (2005)ADSCrossRefGoogle Scholar
  75. 75.
    I.G. Koprinkov, A. Suda, P. Wang, K. Midorikawa, Self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation. Phys. Rev. Lett. 84, 3847 (2000)ADSCrossRefGoogle Scholar
  76. 76.
    A.L. Gaeta, F. Wise, Comment on self-compression of high-intensity femtosecond optical pulses and spatiotemporal soliton generation. Phys. Rev. Lett. 87, 229401 (2001)ADSCrossRefGoogle Scholar
  77. 77.
    S. Skupin, L. Bergé, U. Peschel, F. Lederer, Interaction of femtosecond light filaments with obscurants in aerosols. Phys. Rev. Lett. 93, 023901 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences, (Springer, New York, 1999)Google Scholar
  79. 79.
    L. Berge, S. Skupin, G. Steinmeyer, Temporal self-restoration of compressed optical filaments. Phys. Rev. Lett. 101, 213901 (2008). doi: 10.1103/PhysRevLett.101.213901 ADSCrossRefGoogle Scholar
  80. 80.
    L. Bergé, S. Skupin, G. Steinmeyer, Self-recompression of laser filaments exiting a gas cell. Phys. Rev. A 79, 033838 (2009)ADSCrossRefGoogle Scholar
  81. 81.
    C. Brée, A. Demircan, J. Bethge, E.T.J. Nibbering, S. Skupin, L. Bergé, G. Steinmeyer, Filamentary pulse self-compression: the impact of the cell windows. Phys. Rev. A 83, 043803 (2011). doi: 10.1103/PhysRevA.83.043803
  82. 82.
    G. Stibenz, G. Steinmeyer, Optimizing spectral phase interferometry for direct electric-field reconstruction. Rev. Sci. Instrum. 77, 073105 (2006)ADSCrossRefGoogle Scholar
  83. 83.
    S.A.Y. Al-Ismail, C.A. Hogarth, Optical absorption of metal-loaded polymer films prepared by vacuum evaporation. J. Mater. Sci. Lett. 7, 135 (1988). ISSN 0261–8028, doi: 10.1007/BF01730595 Google Scholar
  84. 84.
    M. Sheik-Bahae, D.C. Hutchings, D.J. Hagan, E.W. van Stryland, Dispersion of bound electronic nonlinear refraction in solids. IEEE J. Quantum Electron. 27, 1296 (1991)ADSCrossRefGoogle Scholar
  85. 85.
    T. Yovcheva, T. Babeva, K. Nikolova, G. Mekishev, Refractive index of corona-treated polypropylene films. J. Opt. A Pure Appl. Opt. 10, 055008 (2008)ADSCrossRefGoogle Scholar
  86. 86.
    P. Sprangle, J.R. Pe nano, B. Hafizi, Propagation of intense short laser pulses in the atmosphere. Phys. Rev. E 66, 046418 (2002)Google Scholar
  87. 87.
    A.A. Zozulya, S.A. Diddams, A.G.V. Engen, T.S. Clement, Propagation ynamics of intense femtosecond pulses: multiple splittings, coalescence, and continuum generation. Phys. Rev. Lett. 82, 1430 (1999)ADSCrossRefGoogle Scholar
  88. 88.
    E.T.J. Nibbering, G. Grillon, M.A. Franco, B.S. Prade, A. Mysyrowicz, Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 14, 650 (1997)ADSCrossRefGoogle Scholar
  89. 89.
    J.-F. Daigle, O. Kosareva, N. Panov, M. Bégin, F. Lessard, C. Marceau, Y. Kamali, G. Roy, V. Kandidov, S.L. Chin, A simple method to significantly increase filaments’ length and ionization density. Appl. Phys. B 94, 249 (2009)ADSCrossRefGoogle Scholar
  90. 90.
    J. Bethge, C. Brée, H. Redlin, G. Stibenz, P. Staudt, G. Steinmeyer, A. Demircan, S. Düsterer, Self-compression of 120 Â fs pulses in a white-light filament. J. Opt. 13, 055203 (2011)Google Scholar
  91. 91.
    J.R. Peñano, P. Sprangle, B. Hafizi, W. Manheimer, A. Zigler, Transmission of intense femtosecond laser pulses into dielectrics. Phys. Rev. E 72, 036412 (2005)Google Scholar
  92. 92.
    T. Brabec, F. Krausz, Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78, 3282 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Weierstrass Institute for Applied Analysis and Stochastics Leibniz Institute in Forschungsverbund Berlin e. V.Humboldt UniversityBerlinGermany

Personalised recommendations