Advertisement

Generating, Refining and Using Sentiment Lexicons

  • Maarten de Rijke
  • Valentin Jijkoun
  • Fons Laan
  • Wouter Weerkamp
  • Paul Ackermans
  • Gijs Geleijnse
Chapter
Part of the Theory and Applications of Natural Language Processing book series (NLP)

Abstract

In order to use a sentiment extraction system for a media analysis problem, a system would have to be able to determine which of the extracted sentiments are relevant, i.e., it would not only have to identify targets of extracted sentiments, but also decide which targets are relevant for the topic at hand.

Notes

Acknowledgements

In addition to funding by the STEVIN programme, this research was also partially supported by the European Union’s ICT Policy Support Programme as part of the Competitiveness and Innovation Framework Programme, CIP ICT-PSP under grant agreement nr 250430, the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreements nr 258191 (PROMISE Network of Excellence) and 288024 (LiMoSINe project), the Netherlands Organisation for Scientific Research (NWO) under project nrs 612.061.814, 612.061.815, 640.004.802, 380-70-011, 727.011.005, the Center for Creation, Content and Technology (CCCT), the Hyperlocal Service Platform project funded by the Service Innovation & ICT program, the WAHSP project funded by the CLARIN-NL program, under COMMIT project Infiniti and by the ESF Research Network Program ELIAS.

References

  1. 1.
    Altheide, D.: Qualitative Media Analysis. Sage, Thousand Oaks (1996)CrossRefGoogle Scholar
  2. 2.
    Balog, K., Mishne, G., de Rijke, M.: Why are they excited?: identifying and explaining spikes in blog mood levels. In: EACL ’06, Trento, pp. 207–210 (2006)Google Scholar
  3. 3.
    Buxton, B.: Sketching User Experiences: Getting the Design Right and the Right Design. Morgan Kaufmann, San Francisco (2007)Google Scholar
  4. 4.
    Choi, Y., Kim, Y., Myaeng, S.-H.: Domain-specific sentiment analysis using contextual feature generation. In: TSA ’09, pp. 37–44. ACM, New York (2009)Google Scholar
  5. 5.
    Fahrni, A., Klenner, M.: Old wine or warm beer: target-specific sentiment analysis of adjectives. In: AISB 2008 Convention, Aberdeen, pp. 60–63 (2008)Google Scholar
  6. 6.
    Godbole, N., Srinivasaiah, M., Skiena, S.: Large-scale sentiment analysis for news and blogs. In: ICWSM ’07, Denver (2007)Google Scholar
  7. 7.
    Jijkoun, V., de Rijke, M.: Bootstrapping subjectivity detection. In: SIGIR ’11, Beijing (2011)Google Scholar
  8. 8.
    Jijkoun, V., de Rijke, M., Weerkamp, W.: Generating focused topic-specific sentiment lexicons. In: ACL ’10, Uppsala (2010a)Google Scholar
  9. 9.
    Jijkoun, V., de Rijke, M., Weerkamp, W., Ackermans, P., Geleijnse, G.: Mining user experiences from online forums: an exploration. In: NAACL HLT 2010 Workshop on Computational Linguistics in a World of Social Media, Los Angeles (2010b)Google Scholar
  10. 10.
    Kanayama, H., Nasukawa, T.: Fully automatic lexicon expansion for domain-oriented sentiment analysis. In: EMNLP ’06, Sydney, pp. 355–363 (2006)Google Scholar
  11. 11.
    Kim, S., Hovy, E.: Determining the sentiment of opinions. In: COLING 2004, Geneva (2004)Google Scholar
  12. 12.
    Kim, Y., Choi, Y., Myaeng, S.-H.: Generating domain-specific clues using news corpus for sentiment classification. In: ICWSM ’10, Washington, DC (2010)Google Scholar
  13. 13.
    Lavrenko, V., Croft, B.: Relevance-based language models. In: SIGIR ’01, New Orleans (2001)Google Scholar
  14. 14.
    Lee, Y., Na, S.-H., Kim, J., Nam, S.-H., Jung, H.-Y., Lee, J.-H.: KLE at TREC 2008 blog track: blog post and feed retrieval. In: TREC 2008, Gaithersburg (2008)Google Scholar
  15. 15.
    Liu, B., Hu, M., Cheng, J.: Opinion observer: analyzing and comparing opinions on the web. In: WWW ’05, Chiba (2005)Google Scholar
  16. 16.
    Macdonald, C., Ounis, I.: The TREC Blogs06 collection: creating and analysing a blog test collection. Technical Report TR-2006-224, University of Glasgow (2005)Google Scholar
  17. 17.
    Mei, Q., Ling, X., Wondra, M., Su, H., Zhai, C.: Topic sentiment mixture: modeling facets and opinions in weblogs. In: WWW ’07, Banff, pp. 171–180 (2007)Google Scholar
  18. 18.
    Meij, E., Weerkamp, W., Balog, K., de Rijke, M.: Parsimonious relevance models. In: SIGIR ’08, Singapore (2008)Google Scholar
  19. 19.
    Metzler, D., Croft, W.B.: A markov random feld model for term dependencies. In: SIGIR ’05, Salvador, pp. 472–479 (2005)Google Scholar
  20. 20.
    Na, S.-H., Lee, Y., Nam, S.-H., Lee, J.-H.: Improving opinion retrieval based on query-specific sentiment lexicon. In: ECIR ’09, Toulouse, pp. 734–738 (2009)Google Scholar
  21. 21.
    Ounis, I., Macdonald, C., de Rijke, M., Mishne, G., Soboroff, I.: Overview of the TREC 2006 blog track. In: TREC 2006, Gaithersburg (2007)Google Scholar
  22. 22.
    Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2, 1–135 (2008)CrossRefGoogle Scholar
  23. 23.
    Popescu, A.-M., Etzioni, O.: Extracting product features and opinions from reviews. In: HLT/EMNLP ’05, Vancouver (2005)Google Scholar
  24. 24.
    Riloff, E., Wiebe, J.: Learning extraction patterns for subjective expressions. In: EMNLP ’03, Sapporo, Japan (2003)Google Scholar
  25. 25.
    Seki, Y., Evans, D.K., Ku, L.-W., Chen, H.-H., Kando, N., Lin, C.-Y.: Overview of opinion analysis pilot task at NTCIR-6. In: NTCIR-6, Tokyo (2007)Google Scholar
  26. 26.
    Seki, Y., Evans, D.K., Ku, L.-W., Sun, L., Chen, H.-H., Kando, N.: Overview of multilingual opinion analysis task at NTCIR-7. In: NTCIR-7, Tokyo (2008)Google Scholar
  27. 27.
    Weerkamp, W., Balog, K., de Rijke, M.: A generative blog post retrieval model that uses query expansion based on external collections. In: ACL-IJCNLP 2009, Singapore (2009)Google Scholar
  28. 28.
    Weerkamp, W., de Rijke, M.: Credibility improves topical blog post retrieval. In: ACL-08: HLT, Columbus, pp. 923–931 (2008)Google Scholar
  29. 29.
    Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions in language. Lang. Resour. Eval. 39, 165–210 (2005)CrossRefGoogle Scholar
  30. 30.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: HLT ’05, Vancouver, Canada, pp. 347–354 (2005)Google Scholar
  31. 31.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity: an exploration of features for phrase-level sentiment analysis. Comput. Linguist. 35 (3), 399–433 (2009)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Open Access. This chapter is distributed under the terms of the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Maarten de Rijke
    • 1
  • Valentin Jijkoun
    • 2
  • Fons Laan
    • 1
  • Wouter Weerkamp
    • 1
  • Paul Ackermans
    • 3
  • Gijs Geleijnse
    • 3
  1. 1.ISLA, University of AmsterdamAmsterdamNetherlands
  2. 2.Textkernel BVAmsterdamNetherlands
  3. 3.Philips Research EuropeEindhovenNetherlands

Personalised recommendations