The IDIS Model at the Molecular Limit

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the previous chapter we have shown that the IDIS model is a simple yet accurate model for predicting and studying energy level alignment at metal-organic interfaces, that appear in new organic electronic devices like OLEDs. However there are other systems where metal-organic interaction takes place, but are not an infinite metal-organic interface. This is the case of molecular electronics devices (where an organic molecule is attached to two metallic electrodes) , or individual molecules deposited over surfaces at extremely low coverage . It should be desirable to extend our model to those kind of systems.

Keywords

Fermi Level IDIS Model Potential Drop Charge Energy Screening Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Xu, N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science. 301(5637), 1221 (2003)Google Scholar
  2. 2.
    N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173 (2006)Google Scholar
  3. 3.
    M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. Cuevas, J. van Ruitenbeek, Highly Conductive Molecular Junctions Based on Direct Binding of Benzene to Platinum Electrodes. Phys. Rev. Lett. 101(4), 46801 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M. Reed, C. Zhou, C. Muller, T. Burgin , J. Tour, Conductance of a molecular junction. Science .278(5336), 252 (1997)Google Scholar
  5. 5.
    M. Ruben, A. Landa, E. Lörtscher, H. Riel, M. Mayor, H. Görls, H.B. Weber, A. Arnold, F. Evers, Charge transport through a cardan-joint molecule. Small . 4(12), 2229 (2008)Google Scholar
  6. 6.
    X. Lu, M. Grobis, K. Khoo, S. Louie , M. Crommie, Charge transfer and screening in individual C60 molecules on metal substrates: A scanning tunneling spectroscopy and theoretical study. Phys. Rev.B.70(11)115418 (2004).Google Scholar
  7. 7.
    A. Maeland, T. Flanagan, Lattice spacings of gold-palladium alloys. Can. J. Phys. 42(11), 2364 (1964)Google Scholar
  8. 8.
    J. Sau, J. Neaton, H. Choi, S. Louie , M. Cohen, Electronic Energy Levels of Weakly Coupled Nanostructures: C60-Metal Interfaces. Phys. Rev. Lett.101(2), 26804 (2008)Google Scholar
  9. 9.
    H. Vázquez, Energy level alignment at organic semiconductor interfaces. Ph.D. thesis, Universidad Autónoma de Madrid, 2006Google Scholar
  10. 10.
    F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11(39), 8658 (2009)Google Scholar
  11. 11.
    E. Abad, C. González, J. Ortega , F. Flores, Charging energy, self-interaction correction and transport energy gap for a nanogap organic molecular junction. Org. Electron.11(2), 332 (2010)Google Scholar
  12. 12.
    J. Palacios, Coulomb blockade in electron transport through a C60 molecule from first principles. Phys. Rev.B. 72(12), 125424 (2005).Google Scholar
  13. 13.
    J. Palacios, A. Pérez-Jiménez, E. Louis , J. Vergés, Fullerene-based molecular nanobridges:A first-principles study. Phys. Rev.B. 64(11), 115411 (2001)Google Scholar
  14. 14.
    N. Sergueev, A.A. Demkov, H. Guo, Inelastic resonant tunneling in \(\rm C_{60}\) molecular junctions. Phys. Rev. B .75, 233418 (2007)Google Scholar
  15. 15.
    C. González, J. Ortega, F. Flores, D. Martínez-Martín , J. Gómez-Herrero, Initial Stages of the Contact between a Metallic Tip and Carbon Nanotubes. Phys. Rev. Lett.102(10), 106801 (2009)Google Scholar
  16. 16.
    E. Abad, J. Ortega , F. Flores, Metal/organic barrier formation for a C60/Au interface: from the molecular to the monolayer limit. Phys. Status Solidi A. 209, 636 (2012)Google Scholar
  17. 17.
    M. C. Desjonquères , D. Spanjaard, Concepts in Surface Physics. Springer-Verlag (1996)Google Scholar
  18. 18.
    E. Abad, J.I. Martínez, J. Ortega, F. Flores, Barrier formation and charging energy for a variable nanogap organic molecular junction: a tip/C60 /Au(111) configuration. J. Phys. Condens. Matter 22(30), 304007 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Autonomous University of MadridMadridSpain

Personalised recommendations