General Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the second half of the 20th century, the field of electronics has suffered an outstanding progress. Since the invention of the transistor, in 1947, the speed and power of electronic devices has increased exponentially, while its size has decreased in the same proportion. The initially slightly idealistic Moore’s law, which states that the number of transistors that can be placed inexpensively on an integrated circuit is doubled approximately every two years, remains true 45 years later (see Fig. 1.1).

Keywords

Scanning Tunneling Microscope Organic Semiconductor Scanning Tunneling Microscope Image Metallic Nanowires Energy Level Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics, 1st edn. (Brooks Cole, New York, 1976)Google Scholar
  2. 2.
    S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge 1997)Google Scholar
  3. 3.
    N. Agraït, A. Yeyati, J.V. Ruitenbeek, Quantum properties of atomic-sized conductors. Phys. Rep. 377(2–3), 81 (2003). doi: 10.1016/S0370-1573(02)00633-6 Google Scholar
  4. 4.
    B. Xu, N.J. Tao, Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301(5637), 1221 (2003). doi: 10.1126/science.1087481 Google Scholar
  5. 5.
    A. Yeyati, F. Flores, A. Martín-Rodero, Transport in multilevel quantum dots: from the Kondo effect to the Coulomb blockade regime. Phys. Rev. Lett. 83(3), 600 (1999). doi: 10.1103/PhysRevLett.83.600 Google Scholar
  6. 6.
    C. Gómez-Navarro, P.J. de Pablo, J. Gómez-Herrero, B. Biel, F.J. Garcia-Vidal, A. Rubio, F. Flores, Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime. Nat. Mater. 4(7), 534 (2005). doi: 10.1038/nmat1414 Google Scholar
  7. 7.
    G. Rubio-Bollinger, S. Bahn, N. Agraït, K. Jacobsen, S. Vieira, Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87(2), 026101 (2001). doi: 10.1103/PhysRevLett.87.026101 Google Scholar
  8. 8.
    J. Wang, Can man-made nanomachines compete with nature biomotors? ACS nano 3(1), 4 (2009). doi: 10.1021/nn800829k
  9. 9.
    N.J. Tao, Electron transport in molecular junctions. Nat. Nanotechnol. 1(3), 173 (2006). doi: 10.1038/nnano.2006.130 Google Scholar
  10. 10.
    R.M. Metzger, M.P. Cava. Rectification by a single molecule of hexadecylquinolinium tricyanoquinodimethanide. Ann. N.Y. Acad. Sci. 852(1, Molecular electronics: science and technology), 95 (1998). doi: 10.1111/j.1749-6632.1998.tb09866.x
  11. 11.
    J. Chen, M.A. Reed, A.M. Rawlett, J.M. Jour, Large on-off ratios and negative differential resistance in a molecular electronic device. Science 286, 1550 (1999). doi: 10.1126/science.286.5444.1550 Google Scholar
  12. 12.
    C. Collier, E. Wong, M. Belohradský, F. Raymo, J. Stoddart, P. Kuekes, R. Williams, J. Heath, Electronically configurable molecular-based logic gates. Science 285(5426), 391 (1999). doi: 10.1126/science.285.5426.391 Google Scholar
  13. 13.
    J.C. Cuevas, E. Scheer, Molecular Electronics An Introduction to Theory and Experiment (World Scientific Publishing Co, Hackensack, 2010)CrossRefGoogle Scholar
  14. 14.
    J.M. Tour, Molecular electronics. Synthesis and testing of components. Acc. Chem. Res. 33(11), 791 (2000)CrossRefGoogle Scholar
  15. 15.
    W. Lu, C.M. Lieber, Nanoelectronics from the bottom up. Nat. Mater. 6(11), 841 (2007). doi: 10.1038/nmat2028 Google Scholar
  16. 16.
    W.R. Salanek, S.Stafstrom, J.L.Bredas, Conjugated Polymer Surfaces and Interfaces: Electronic and Chemical Structure of Interfaces for Polymer Light emitting Diodes, (Cambridge University Press, Cambridge, 1996)Google Scholar
  17. 17.
    H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Matter. 11(8), 605(1999)Google Scholar
  18. 18.
    W.R. Salaneck, K. Seki, A. Kahn, J.J. Piraeux (eds), Conjugated Polymer and Molecular interfaces (Dekker, New York, 2002)Google Scholar
  19. 19.
    F. Flores, J. Ortega, H. Vázquez, Modelling energy level alignment at organic interfaces and density functional theory. Phys. Chem. Chem. Phys. 11(39), 8658 (2009). doi: 10.1039/b902492c Google Scholar
  20. 20.
    P. Samori, F. Cacialli (eds), Functional Supramolecular Architectures: for Organic Electronics and Nanotechnology (Wiley, Weinheim, 2010)Google Scholar
  21. 21.
    Transistor Count and Moore’s Law. Image. http://commons.wikimedia.org/wiki/File:Transistor_Count_and_Moore%27s_Law-2011.svg. Accessed 13 May 2011
  22. 22.
    M. Brandbyge, J. Schiøtz, M. Sørensen, P. Stoltze, K. Jacobsen, J. Nørskov, L. Olesen, E. Laegsgaard, I. Stensgaard, F. Besenbacher, Quantized conductance in atom-sized wires between two metals. Phys. Rev. B, 52(11), 8499 (1995). doi: 10.1103/PhysRevB.52.8499 Google Scholar
  23. 23.
    J. Gimzewski, R. Möller, Transition from the tunneling regime to point contact studied using scanning tunneling microscopy. Phys. Rev. B 36(2), 1284 (1987). doi: 10.1103/PhysRevB.36.1284 Google Scholar
  24. 24.
    P. Jelínek, R. Pérez, J. Ortega, F. Flores, Hydrogen dissociation over Au nanowires and the fractional conductance quantum. Phys. Rev. Lett. 96(4), 046803 (2006). doi: 10.1103/PhysRevLett.96.046803 Google Scholar
  25. 25.
    P. Jelínek, R. Pérez, J. Ortega, F. Flores, Mechanical properties and electrical conductance of different Al nanowires submitted to an homogeneous deformation: a first-principles simulation. Surf. Sci. 566–568, 13 (2004). doi: 10.1016/j.susc.2004.05.014
  26. 26.
    B. Yoon, H. Häkkinen, U. Landman, A.S. Wörz, J.-M. Antonietti, S. Abbet, K. Judai, U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307(5708), 403 (2005). doi: 10.1126/science.1104168 Google Scholar
  27. 27.
    M.S. Chen, D.W. Goodman, The structure of catalytically active gold on titania. Science 306(5694), 252 (2004). doi: 10.1126/science.1102420 Google Scholar
  28. 28.
    T. Todorov, A. Sutton, Jumps in electronic conductance due to mechanical instabilities. Phys. Rev. Lett. 70(14), 2138 (1993). doi: 10.1103/PhysRevLett.70.2138 Google Scholar
  29. 29.
    R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM Journal of Research and Development 32(3), 306 (1988). doi: 10.1147/rd.323.0306 Google Scholar
  30. 30.
    D. Fisher, P. Lee, Relation between conductivity and transmission matrix. Phys. Rev. B 23(12), 6851 (1981). doi: 10.1103/PhysRevB.23.6851 Google Scholar
  31. 31.
    Samsung®. Advertisment. http://www.samsung.com/es/experience/galaxys2/img/feature_img.png&gt. Accessed 12 Sept 2011
  32. 32.
  33. 33.
    Sony®. Press release image. http://www.sony.co.jp/SonyInfo/News/Press/200705/07-053/01.jpg. Accessed 24 May 2007
  34. 34.
    E. Abad, J. Ortega, F. Flores. Metal/organic barrier formation for a C60/Au interface: from the molecular to the monolayer limit. Phys. Status Solidi A 209, 636 (2012)Google Scholar
  35. 35.
    H. Vázquez, Energy level alignment at organic semiconductor interfaces. Ph.D. Thesis, Universidad Autónoma de Madrid, 2006Google Scholar
  36. 36.
    S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells. Chem. Rev. 107(4), 1324 (2007). doi: 10.1021/cr050149z Google Scholar
  37. 37.
    N. Sato, K. Seki, H. Inokuchi. Polarization energies of organic solids determined by ultraviolet photoelectron spectroscopy. J. Chem. Soc. Faraday Trans. 2 77(9), 1621 (1981). doi: 10.1039/f29817701621
  38. 38.
    H.-J. Freund, R.W. Bigelow, Dynamic effects in VUV- and XUV-Spectroscopy of Organic Molecular Solids. Phys. Scr. T17, 50 (1987). doi: 10.1088/0031-8949/1987/T17/006
  39. 39.
    C. Duke, W. Salaneck, T. Fabish, J. Ritsko, H. Thomas, A. Paton, Electronic structure of pendant-group polymers: Molecular-ion states and dielectric properties of poly(2-vinyl pyridine). Phys. Rev. B 18(10), 5717 (1978). doi: 10.1103/PhysRevB.18.5717 Google Scholar
  40. 40.
    J.M. Blanco, F. Flores, R. Perez, STM-theory: Image potential, chemistry and surface relaxation. Prog. Surf. Sci. 81(10–12), 403 (2006). doi: 10.1016/j.progsurf.2006.07.004
  41. 41.
    C. Bai, Scanning Tunneling Microscopy and Its Applications, 2nd edn. Springer, New York, 2000)Google Scholar
  42. 42.
    E. Tsiper, Z.G. Soos, W. Gao, A. Kahn, Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA. Chem. Phys. Lett. 360(1–2), 47 (2002). doi: 10.1016/S0009-2614(02)00774-1
  43. 43.
    M. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Kelvin probe force microscopy. Appl. Phys. Lett. 58(25), 2921 (1991). doi: 10.1063/1.105227 Google Scholar
  44. 44.
    E. Moons, A. Goossens, T. Savenije, Surface Photovoltage of Porphyrin Layers Using the Kelvin Probe Technique. J. Phys. Chem. B 101(42), 8492 (1997). doi: 10.1021/jp971071w Google Scholar
  45. 45.
    H. Sugimura, K. Hayashi, N. Saito, O. Takai, N. Nakagiri, Kelvin probe force microscopy images of microstructured organosilane self-assembled monolayers. Jpn. J. Appl. Phys. 40(Part 1, No. 6B), 4373 (2001). doi: 10.1143/JJAP.40.4373
  46. 46.
    M. Kiguchi, O. Tal, S. Wohlthat, F. Pauly, M. Krieger, D. Djukic, J. Cuevas, J. van Ruitenbeek, Highly conductive molecular junctions based on direct binding of benzene to platinum electrodes. Phys. Rev. Lett. 101(4), 46801 (2008). doi: 10.1103/PhysRevLett.101.046801 Google Scholar
  47. 47.
    P. Jelínek, R. Pérez, J. Ortega, F. Flores, First-principles simulations of the stretching and final breaking of Al nanowires: Mechanical properties and electrical conductance. Phys. Rev. B 68(8), 085403 (2003). doi: 10.1103/PhysRevB.68.085403 Google Scholar
  48. 48.
    C. Zhou, C.J. Muller, M.R. Deshpande, J.W. Sleight, M.A. Reed, Microfabrication of a mechanically controllable break junction in silicon. Appl. Phys. Lett. 67(8), 1160 (1995). doi: 10.1063/1.114994 Google Scholar
  49. 49.
    X. Xiao, B. Xu, N.J. Tao, Measurement of single molecule conductance: benzenedithiol and benzenedimethanethiol. Nano Lett. 4(2), 267 (2004)ADSCrossRefGoogle Scholar
  50. 50.
    T. Albrecht, A. Guckian, J. Ulstrup, J.G. Vos, Transistor-like behavior of transition metal complexes. Nano Lett. 5(7), 1451 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    T. Albrecht, K. Moth-Poulsen, J.B. Christensen, A. Guckian, T. Bjørnholm, J.G. Vos, J. Ulstrup. In situ scanning tunnelling spectroscopy of inorganic transition metal complexes. Faraday Discuss 131, 265 (2006). doi: 10.1039/b505451f
  52. 52.
    J.M. Blanco, C. González, P. Jelínek, J. Ortega, F. Flors, R. Pérez, First-principles simulations of STM images: From tunneling to the contact regime. Phys. Rev. B 70(8), 085405 (2004). doi: 10.1103/PhysRevB.70.085405 Google Scholar
  53. 53.
    J.M. Blanco, Estudio teórico del microscopio de efecto túnel con métodos de primeros principios. Ph.D. Thesis, Universidad Autónoma de Madrid, 2004Google Scholar
  54. 54.
    C. Tejedor, F. Flores, E. Louis, The metal-semiconductor interface: Si (111) and zincblende (110) junctions. J. Phys. C: Solid State Phys. 10, 2163 (1977). doi: 10.1088/0022-3719/10/12/022
  55. 55.
    F. Flores, C. Tejedor, Energy barriers and interface states at heterojunctions. J. Phys. C: Solid State Phys. 12, 731 (1979). doi: 10.1088/0022-3719/12/4/018

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Autonomous University of MadridMadridSpain

Personalised recommendations