Crypto Galore!

  • Neal Koblitz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7370)

Abstract

I discuss three aspects of mathematical cryptography that have been themes of Mike Fellows’ work: applications of parameterized complexity, combinatorial systems, and Kid Krypto. At times my treatment is anecdotal, and on occasion it veers toward the impractical, fanciful, and even downright goofy.

Keywords

Elliptic Curve Secret Message Discrete Logarithm Perfect Code Math Education 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12, 125–134 (1992)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bell, T., Fellows, M.R., Koblitz, N., Powell, M., Thimbleby, H., Witten, I.: Explaining cryptographic systems to the general public. Computers and Education 40, 199–215 (2003)CrossRefGoogle Scholar
  5. 5.
    Brassard, G.: A note on the complexity of cryptography. IEEE Trans. Information Theory 25, 232–233 (1979)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Brickell, E.F.: Breaking Iterated Knapsacks. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 342–358. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  7. 7.
    Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-Resilient Key Exchange in the Bounded Retrieval Model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Di Crescenzo, G., Lipton, R.J., Walfish, S.: Perfectly Secure Password Protocols in the Bounded Retrieval Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 225–244. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Information Theory 22, 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dziembowski, S.: Intrusion-Resilience Via the Bounded-Storage Model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Fellows, M.R., Koblitz, A.H., Koblitz, N.: Cultural aspects of math education reform. Notices of the Amer. Math. Soc. 41, 5–9 (1994)Google Scholar
  12. 12.
    Fellows, M.R., Koblitz, N.: Fixed-parameter Complexity and Cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  13. 13.
    Fellows, M.R., Koblitz, N.: Combinatorially based cryptography for children (and adults). In: Proc. 24th Southeastern Intern. Conf. Combinatorics, Graph Theory and Computing, Boca Raton, Florida (February 1993); Congressus Numerantium 99, 9–41 (1994)Google Scholar
  14. 14.
    Fellows, M.R., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite Fields: Theory, Applications, and Algorithms, Second Intern. Conf. Finite Fields, Las Vegas (August 1993); Contemporary Math. 168, 51–61 (1994)Google Scholar
  15. 15.
    Fellows, M.R., Koblitz, N.: Kid Krypto. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 371–389. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  16. 16.
    Katz, J.: Signature schemes with bounded leakage resilience, http://eprint.iacr.org/2009/220.pdf
  17. 17.
    Koblitz, A.H.: A Convergence of Lives: Sofia Kovalevskaia — Scientist, Writer, Revolutionary. Birkhaüser (1983)Google Scholar
  18. 18.
    Koblitz, N.: Cryptography as a teaching tool. Cryptologia 21, 317–326 (1997)CrossRefMATHGoogle Scholar
  19. 19.
    Koblitz, N.: Algebraic Aspects of Cryptography. Springer (1998)Google Scholar
  20. 20.
    Koblitz, N.: The uneasy relationship between mathematics and cryptography. Notices of the Amer. Math. Soc. 54, 972–979 (2007)MathSciNetMATHGoogle Scholar
  21. 21.
    Koblitz, N.: Secret codes and online security: A seminar for entering students. Cryptologia 34, 145–154 (2010)CrossRefMATHGoogle Scholar
  22. 22.
    Koblitz, N.: Random Curves: Journeys of a Mathematician. Springer (2007)Google Scholar
  23. 23.
    Koblitz, N., Menezes, A.J.: Another look at security definitions (to appear), http://anotherlook.ca
  24. 24.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annals Math. 126, 649–673 (1987)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lund, C., Fortnow, L., Karkoff, H., Nisan, N.: Algebraic methods for interactive proof systems. In: Proc. 31st IEEE Symp. on Foundations of Computer Science, pp. 2–10 (1990)Google Scholar
  26. 26.
    Merkle, R., Hellman, M.: Hiding information and signatures in trapdoor knapsacks. IEEE Trans. Information Theory 24, 525–530 (1978)CrossRefGoogle Scholar
  27. 27.
    Odlyzko, A.: The rise and fall of knapsack crpyptosystems. In: Cryptology and Computational Number Theory, Proc. Symp. Appl. Math., vol. 42, pp. 75–88. Amer. Math. Soc. (1990)Google Scholar
  28. 28.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Selman, A.L.: Complexity issues in cryptography. In: Computational Complexity Theory, Proc. Symp. Appl. Math., vol. 38, pp. 92–107. Amer. Math. Soc. (1988)Google Scholar
  30. 30.
    Shamir, A.: A polynomial time algorithm for breaking the basic Merkle Hellman cryptosystem. IEEE Trans. Information Theory 30, 699–704 (1984)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Steinwandt, R., Geiselmann, W., Endsuleit, R.: Attacking a polynomial-based cryptosystem: Polly Cracker. Intern. J. Information Security 1, 143–148 (2002)CrossRefMATHGoogle Scholar
  32. 32.
    van Oorschot, P.: A comparison of practical public-key cryptosystems based on integer factorization and discrete logarithm. In: Simmons, G. (ed.) Contemporary Cryptology: The Science of Information Integrity, pp. 289–322. IEEE Press (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Neal Koblitz
    • 1
  1. 1.Department of MathematicsUniversity of WashingtonSeattleU.S.A.

Personalised recommendations